Advertisement

基于灰狼算法(GWO)优化的极限学习机(ELM)回归预测模型及其多变量输入分析,评估指标涵盖R2、MAE和MSE

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种结合灰狼优化算法与极限学习机的新型回归预测模型,并通过R²、MAE及MSE等指标评估了其在多变量输入条件下的性能。 灰狼算法(GWO)优化极限学习机(ELM)回归预测模型,在多变量输入的情况下进行分析。评价指标包括:R2、MAE、MSE、RMSE 和 MAPE 等,代码质量极高,便于学习和替换数据。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • GWOELMR2MAEMSE
    优质
    本研究提出了一种结合灰狼优化算法与极限学习机的新型回归预测模型,并通过R²、MAE及MSE等指标评估了其在多变量输入条件下的性能。 灰狼算法(GWO)优化极限学习机(ELM)回归预测模型,在多变量输入的情况下进行分析。评价指标包括:R2、MAE、MSE、RMSE 和 MAPE 等,代码质量极高,便于学习和替换数据。
  • 海鸥(SOA)(ELM),涉R2MAEMSE
    优质
    本文提出一种结合海鸥算法优化的极限学习机回归预测模型,并对其在多变量输入下的性能进行评估,使用R²、均方误差(MSE)及平均绝对误差(MAE)作为评价标准。 海鸥算法(SOA)优化极限学习机ELM进行回归预测,称为SOA-ELM回归预测模型,并采用多变量输入方式。评价指标包括R2、MAE、MSE、RMSE和MAPE等。代码质量高,易于学习并可方便地替换数据。
  • 粒子群,PSO-KELM,涉R2MAEMSE
    优质
    本文探讨了利用改进的粒子群优化(PSO)技术对核极限学习机(KELM)进行参数调优的方法,并构建了一个能够处理多变量输入的回归预测模型。文中详细分析了该模型在R2、平均绝对误差(MAE)和均方误差(MSE)等指标上的表现,证明其在提高预测精度方面的优越性。 粒子群算法(PSO)优化核极限学习机回归预测模型(PSO-KELM),适用于多变量输入场景。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量高且易于学习与数据替换。
  • 麻雀搜索,SSA-KELM,性能R2MAEMSE、R
    优质
    本研究提出了一种基于麻雀搜索算法优化的核极限学习机(SSA-KELM)回归预测模型,并进行了多变量输入分析。通过评估R²、MAE和MSE等性能指标,展示了该方法的有效性与优越性。 麻雀算法(SSA)优化了核极限学习机回归预测模型,并且该方法适用于多变量输入的情况。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量非常高,便于学习与替换。
  • 海鸥(SOA),SOA-KELMR2MAEMSER
    优质
    本文提出了一种结合海鸥算法优化的核极限学习机回归预测模型(SOA-KELM),并进行了多变量输入效果分析,评估标准包括R²、MAE、MSE和相关系数。 海鸥算法(Seagull Optimization Algorithm, SOA)是一种模仿海鸥在寻找食物过程中飞行行为的新兴生物启发式全局优化方法,在机器学习领域中用于参数优化以提升模型性能。这里提到的是将SOA应用于核极限学习机(Kernel Extreme Learning Machine, KELM)进行回归预测,构建了一个多变量输入的模型。 KELM是一种基于随机权值的非线性支持向量机模型,通过使用核函数将输入空间映射到高维特征空间来实现非线性的决策边界。其主要优点是训练速度快且不需要迭代优化,在KELM回归预测中,首先利用核函数转换输入数据,并通过简单的线性组合进行预测。 SOA-KELM回归预测的过程如下: 1. **初始化**:随机生成模型参数以初始化海鸥种群的位置。 2. **评估**:计算每个海鸥对应模型的适应度值(即预测误差),常用的评价指标包括决定系数R²、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)以及平均绝对百分比误差(MAPE)。 3. **海鸥飞行**:根据SOA规则更新种群的位置,调整模型参数。这一过程涉及对最优解的探索和局部最优的逃避以找到全局最优解。 4. **终止条件**:达到预设迭代次数或适应度阈值时算法停止,并将当前最佳解决方案作为最终结果。 文件列表中的`kernel_matrix.m`可能包含核矩阵计算,这是KELM的关键部分。由于它决定了输入数据在高维空间的表示方式。而`soa.m`很可能实现海鸥种群更新规则的核心代码。通常情况下,入口文件为`main.m`, 它调用其他函数并执行SOA-KELM优化过程。 此外,初始化程序(如`initialization.m`)负责生成初始参数值;适应度计算可能在`fun.m`中定义;而KELM的训练和预测功能则分别由`kelmTrain.m`和`kelmPredict.m`实现。最后,“使用说明.txt”提供了如何运行代码的指南,同时“data.xlsx”是输入的数据集。 此模型适用于多变量输入预测问题领域如环境科学、经济预测及工程设计等,并通过SOA优化自动寻找最佳核函数参数与隐含层节点数以提高预测精度。用户可根据自己的数据集替换`data.xlsx`, 并根据指南运行代码,应用该模型进行实际预测工作。
  • 秃鹰搜索LSSVMR2MAE
    优质
    本文提出了一种利用秃鹰搜索算法优化最小二乘支持向量机(LSSVM)进行回归预测的方法,并对其在多变量输入下的性能进行了基于R²和平均绝对误差(MAE)的详细评估。 本段落介绍了使用秃鹰算法(BES)优化最小二乘支持向量机回归预测的方法,并提出了BES-LSSVM多变量输入模型。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量高且便于学习与数据替换。
  • 米德(AOA-KELM),应用与R2MAEMSE
    优质
    本文提出并研究了一种新的回归预测方法——基于阿基米德算法优化的核极限学习机(AOA-KELM),探讨其在处理复杂多变量数据时的表现,并通过R²、MAE和MSE指标评估模型性能。 阿基米德优化算法(Arithmetic Optimization Algorithm, AOA)是一种新型的全局优化方法,灵感来源于古希腊数学家阿基米德对浮力原理的研究。它在解决复杂优化问题时表现出良好的全局寻优能力和快速收敛速度,并特别适用于参数优化任务。在机器学习领域中,AOA可以用来寻找最佳超参数以提升模型性能。 核极限学习机(Kernel Extreme Learning Machine, KELM)是一种高效的单层神经网络模型,结合了支持向量机(SVM)的核技巧和极学习机(ELM)快速训练特性。KELM通过隐层节点随机初始化以及使用特定的核函数来处理非线性问题,并且其训练过程只需一次线性求解,避免了传统SVM中的迭代优化步骤。 在本项目中,AOA被应用于KELM参数优化任务上,创建了一种名为AOA-KELM的回归预测模型。该模型能够接受多变量输入数据集,在处理具有多个特征的实际问题时非常有用,例如股票价格预测、气象预报或工程系统行为分析等。 评价指标是衡量模型性能的关键因素之一,这里提到了以下几种: 1. R2(决定系数):用于度量预测值与实际值之间的相关性。R2的取值范围在0到1之间,达到1表示完美拟合。 2. MAE(平均绝对误差):计算预测结果和真实数据差值的绝对值的平均数,反映了模型预测的总体精度水平。 3. MSE(均方误差):与MAE类似但使用平方差来衡量。MSE对大偏差更加敏感。 4. RMSE(根均方误差):是MSE的结果开平方得到的一个度量标准,以原始数据单位表示误差大小。 5. MAPE(平均绝对百分比误差):用百分比形式表达预测结果和实际值之间的差异程度。适合于比较不同尺度的数据集。 项目文件包括: - AOA.m: 实现阿基米德优化算法的代码。 - kernel_matrix.m: 计算核矩阵函数,用于KELM中的非线性转换处理。 - main.m:主程序整合AOA和KELM训练流程的功能模块。 - initialization.m:初始化模型参数的辅助函数。 - fun.m:定义目标或适应度评价标准的脚本段落件。 - kelmTrain.m: KELM模型的训练过程代码实现; - kelmPredict.m: 预测功能代码段。 此外,还提供了一份《使用说明.txt》文档来指导用户如何运行和理解整个项目。同时提供了包含训练及测试数据集的data.xlsx文件以供参考或进一步实验研究之用。 通过本项目的学习与应用实践,参与者不仅可以掌握AOA优化算法的基本原理及其实际操作方法,还可以深入学习KELM的工作机制,并了解怎样将两者结合用于构建高效的回归预测模型。由于代码编写质量高且易于理解阅读,用户能够轻松替换数据以满足不同应用场景的需求。
  • 贝叶斯(Bayes)森林,Bayes-RFR2MAEM
    优质
    本研究提出了一种基于贝叶斯优化的随机森林回归预测方法(Bayes-RF),并对其在处理多变量输入时的表现进行了系统性评估。通过计算R²、MAE等关键指标来验证模型的有效性和精确度,为复杂数据集提供了强大的预测工具。 在数据分析与机器学习领域内,贝叶斯算法及随机森林是解决回归预测问题的两种强大工具。本段落将深入探讨这两种方法及其优化策略以提高数据预测准确性。 首先介绍的是贝叶斯算法——一种基于概率统计推断的方法,它依据贝叶斯定理通过先验概率和似然性计算后验概率。在进行数据预测时,该算法可用于估计未知参数的概率分布,并提供对变量不确定性的度量。此外,在寻找最佳超参数的过程中采用的贝叶斯优化方法能够有效处理高维空间问题并减少过拟合的风险。 随机森林是一种集成学习技术,由多个决策树组成。每个单独的决策树独立地进行分类或回归操作,最终结果通过投票或平均确定。该模型利用特征选择和样本抽取过程中的随机性来增强泛化能力,并降低过度拟合的可能性。在处理多变量输入时,随机森林能够构建大量决策树并通过综合其预测输出实现目标变量的准确预测。 贝叶斯优化与随机森林相结合的应用中(即Bayes-RF),相关文件如regRF_train.m和regRF_predict.m分别用于训练及预测功能;main.m则包含整个流程的主要程序代码,而CostFunction.m定义了模型损失函数以评估预测效果。此外,mexRF_train.mexw64和mexRF_predict.mexw64是经过编译的二进制文件,在处理大规模数据集时可以加速训练与预测过程;data.xlsx则包含了用于测试及验证的数据集合。 为了衡量回归模型的表现,R2(决定系数)、MAE(平均绝对误差)、MSE(均方误差)、RMSE(均方根误差)和MAPE(平均绝对百分比误差)是重要的评估指标。其中,R2值反映了模型解释数据变异性的比例;数值接近1表示拟合效果良好;而MAE、MSE及RMSE则衡量了预测与实际结果之间的差异大小——较小的这些数值表明更好的性能表现;最后,MAPE以百分比形式展示平均误差水平,在面对不同尺度目标变量时具有优势。 在实践中,通过调整随机森林中的参数(如树的数量和节点划分所需的最小样本数等),结合贝叶斯优化方法可以找到最优模型配置。同时利用上述评价指标不断迭代改进直至达到最佳预测精度。 总之,贝叶斯优化与随机森林的组合能够提供一种有效的回归预测技术——它融合了贝叶斯参数估计的优点以及随机森林在多样性及鲁棒性方面的优势。通过合理地调整参数并使用性能评估标准进行测试和验证,可以构建出适用于多变量输入的有效模型,并应用于实际项目中。
  • PSOSVM数据,PSO-SVM准为R2MAEMSE
    优质
    本研究提出了一种结合粒子群优化(PSO)与支持向量机(SVM)的数据回归预测方法,通过构建PSO-SVM多变量输入模型并采用R²、均方误差(MSE)及平均绝对误差(MAE)进行性能评估。 粒子群算法(PSO)优化支持向量机的数据回归预测方法被称为PSO-SVM回归预测。该模型适用于多变量输入,并采用R2、MAE、MSE、RMSE和MAPE等评价指标进行性能评估。代码质量高,易于学习并替换数据。
  • (GWO)混合核(HKELM)GWO-HKELM数据 参数为H
    优质
    本研究提出了一种结合灰狼优化算法与混合核极限学习机的新型回归预测方法,旨在通过优化参数实现更精确的数据分析和预测。该模型在处理复杂非线性关系时表现出色,特别适用于多变量输入情况下的性能提升。 基于灰狼算法(GWO)优化混合核极限学习机(HKELM)回归预测模型。该方法通过调整HKELM的正则化系数、核参数以及核权重系数,提高数据回归预测的准确性。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量高且便于学习与替换数据。