Advertisement

高性能DC-DC开关电源中浪涌电流抑制电路的设计.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了在高性能DC-DC开关电源设计中的浪涌电流问题,并提出了一种有效的抑制电路设计方案,以提高电源系统的稳定性和可靠性。 本段落通过分析DC-DC开关电源中浪涌电流的形成原因,介绍了目前广泛应用的各种浪涌电流抑制方案;并重点讨论了高端领域平台用DC-DC电源所采用的两种新型浪涌抑制电路设计,并利用试验结果验证了这两种设计方案的特点及有效性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DC-DC.pdf
    优质
    本文探讨了在高性能DC-DC开关电源设计中的浪涌电流问题,并提出了一种有效的抑制电路设计方案,以提高电源系统的稳定性和可靠性。 本段落通过分析DC-DC开关电源中浪涌电流的形成原因,介绍了目前广泛应用的各种浪涌电流抑制方案;并重点讨论了高端领域平台用DC-DC电源所采用的两种新型浪涌抑制电路设计,并利用试验结果验证了这两种设计方案的特点及有效性。
  • 图——防
    优质
    本简介探讨了针对电子设备中常见的浪涌电流问题所设计的一种有效抑制电路。通过详细电路图展示,解析其工作原理与应用价值,旨在提高产品稳定性及安全性。 浪涌电流是指电源接通瞬间流入电源设备的峰值电流。由于输入滤波电容迅速充电,该峰值电流会远大于稳态下的输入电流。为了保护AC开关、整流桥、保险丝及EMI滤波器件等元件不被损坏或烧断,电源需要限制其承受的浪涌水平。反复地开闭电路时,在交流电压下不应使电源受损或者导致保险丝熔断。此外,浪涌电流也指由于电路异常情况引起的结温超过额定值的最大正向过载电流。
  • DC-DC补偿器.pdf
    优质
    本文档详细探讨了DC-DC开关电源环路补偿器的设计方法与实践应用,旨在提高电源系统的稳定性及响应速度。 本段落档介绍了数字DC/DC开关电源环路补偿器的设计过程。首先建立了系统的S域小信号模型,并采用数字重设计法根据给定的系统参数设计了数字补偿器。通过使用SISODesignTool仿真平台,结合伯德图分析和根轨迹法,在连续域中设计了模拟补偿器并进行了离散化处理。 在构建s域模型时,考虑到了模数转换器及数字脉宽调制发生器产生的延迟效应的影响,这使得所设计的补偿器能够更好地适应采样速率的变化。基于这种方法开发出的数字补偿器可以实现对脉宽调制信号的精确编程控制,并确保变换器在闭环工作模式下具有良好的动态性能。 最后通过仿真实验验证了该设计方案的有效性。
  • DC-DC转换器采样.pdf
    优质
    本文档探讨了在DC-DC转换器中设计高效的电流采样电路的方法和技巧,旨在提高电源管理系统的精度与稳定性。 DDCDC转换器中电流采样电路的设计.pdf CDC转换器中电流采样电路的设计.pdf DCDC转换器中电流采样电路的设计.pdf
  • 稳压 DC-DC 及充
    优质
    本课程涵盖稳压电源、开关电源、DC-DC变换器和充电电路的设计原理及应用,并深入讲解恒流源电路的工作机制。 电路图是用物理电学标准化的符号表示各元器件组成及关系的一种原理布局图。它能够展示组件间的工作原理,并为分析性能、安装电子和电器产品提供规划方案,满足研究与工程规划的需求。
  • DC/DC技术
    优质
    本论文探讨了负电压DC/DC开关电源的设计原理和技术应用,旨在提高电源转换效率和稳定性。通过优化电路结构与控制策略,实现高性能电源解决方案。 以往的隔离开关电源技术通过变压器实现负电压输出,这会导致电源体积增大及电路复杂性增加。随着专用集成DC-DC控制芯片的发展,非隔离式负电压开关电源因其结构简单、体积小巧而在电子测量设备中越来越受欢迎。因此,对这类电源的研究具有重要的实用价值。 传统的非隔离负电压开关电源主要有两种电路拓扑(如图1和图2所示)。根据图3的滤波输出电容充电电流波形可以看出,在相同电感峰值电流的情况下,采用图2结构可以得到更小输出纹波的负电压,并且其负载能力也更强。然而,由于图2中的开关器件需要连接到电源的负极,这使得控制电路比图1更为复杂,因此目前市场上尚未实现这种电路结构。
  • 防雷击方案.pdf
    优质
    本文档提供了一种用于防止雷击和浪涌损害的开关电源电路设计方法,旨在提高电子设备在恶劣环境下的稳定性和安全性。 在现代电子技术领域中,开关电源电路设计至关重要,因为它不仅影响到设备的电气性能,还关系到其安全运行。随着城市化进程加快,雷击引起的浪涌电流问题日益严重。这不仅仅包括直接遭受雷击的情况,还包括感应雷和通过电力线路侵入的电磁波干扰。这些现象会导致电子设备内部电压和电流突变,对高集成度VLSI芯片造成威胁。 在开关电源电路设计中解决防雷击浪涌的技术主要是为了应对由雷电引起的电网中的电流变化问题。除了直接损害外,雷击还会通过电力线或信号线间接影响设备的正常运行。尤其是在电力系统发生短路或者负载切换时,这种现象尤为显著。由于现代电网覆盖广泛,无论是直接受到雷击还是线路浪涌的影响,电子设备都可能受到波及。 为了提升电子产品的耐压和电流承受能力,并减少感应雷电以及电压波动带来的风险,研究人员需要设计出有效的防雷电路。随着信号源路径的增加,系统对电磁干扰敏感度也相应提高,因此在电路中加入防护措施就显得尤为重要。例如,在信号输入端使用滤波器或抑制器件来抵御外来干扰。 为了保护如太阳能控制器等设备免受数据错误和传输速率下降的影响,设计人员通常会采取以下几种防雷击浪涌的策略: 1. 防护电压波动:针对电力系统短路、负荷变化等情况引起的过压现象,需要在电路中加入诸如金属氧化物压敏电阻器(MOV)、瞬态抑制二极管(TVS)和气体放电管等元件来吸收并阻止电压冲击。 2. 控制电流浪涌:通过限流装置或断路保护机制减少电流突变的影响。例如,使用电流限制电路或者自动切断设备以降低过大的电力负荷对硬件的损害。 3. 信号线路防护措施:对于可能遭受雷击影响的信号线,设计人员会采用滤波器、浪涌抑制器件等方法来确保数据传输不受干扰或损坏。 4. 物理隔离手段:在电源和信号路径之间设置物理屏障如变压器与光耦合器以减少直接电气连接带来的风险,并提高设备的整体抗扰能力。 上述措施是开关电源电路设计中不可或缺的部分。设计师必须全面考虑整个系统的安全性能,在各个阶段采取综合策略,确保最佳的防雷效果。实际应用时需结合具体设备特性、使用环境及成本预算等因素来选择合适的防护方案。通过这些技术的应用,可以显著提高电子产品的稳定性和使用寿命,并保证其在多雨季节的安全运行。
  • 基于DC/DC
    优质
    本项目致力于研发一种创新性的负电压DC/DC开关电源,采用先进的设计理念和技术方案,旨在提高转换效率和稳定性。通过优化电路结构及选择高效半导体器件,实现了宽输入范围、高功率密度与良好的负载瞬态响应特性,适用于各种电子设备的电源管理需求。 随着电子技术的快速发展,现代电子测量装置通常需要负电源来为内部的集成电路芯片与传感器供电。例如集成运算放大器、电压比较器以及霍尔传感器都需要这种类型的电源。负电源的质量直接影响到这些设备运行的表现,甚至可能导致采集的数据出现显著偏差。目前,大多数电子测量装置采用抗干扰能力强且效率高的开关电源作为其负电源解决方案。
  • AC-DC解析
    优质
    本文章详细解析了AC-DC高频开关电源的工作原理、设计方法及应用技巧,适合电子工程师和技术爱好者阅读参考。 本段落主要讲解了AC-DC高频开关电源电路图,一起来学习一下。
  • DC/DC PWM
    优质
    DC/DC PWM开关电源是一种高效的电力转换装置,通过脉宽调制技术将直流电转换为另一固定或可调节电压的直流电输出,广泛应用于电子设备和通信系统中。 1. 概述 2. DC-DC变换器的基本拓扑电路 3. 带变压器隔离的DC-DC变换器原理 4. PWM控制原理