Advertisement

针对自动驾驶的场景理解关键技术探究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于自动驾驶技术中的场景理解关键问题,探讨包括环境感知、行为预测及决策规划等核心技术,旨在提升车辆在复杂交通环境下的自主驾驶能力。 本段落对基于计算机视觉的自动驾驶场景理解中的关键技术进行了研究,并将实现自动驾驶功能的方法归纳为五种典型范式:基于规则、端到端学习、直接感知、未来帧预测以及脑启发式认知模型。以这五种范式为基础,文章首先分析路域环境中车辆运动状态,然后逐步深入至整体场景的解析与理解,最终完成驾驶场景中多目标行为分析的研究。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于自动驾驶技术中的场景理解关键问题,探讨包括环境感知、行为预测及决策规划等核心技术,旨在提升车辆在复杂交通环境下的自主驾驶能力。 本段落对基于计算机视觉的自动驾驶场景理解中的关键技术进行了研究,并将实现自动驾驶功能的方法归纳为五种典型范式:基于规则、端到端学习、直接感知、未来帧预测以及脑启发式认知模型。以这五种范式为基础,文章首先分析路域环境中车辆运动状态,然后逐步深入至整体场景的解析与理解,最终完成驾驶场景中多目标行为分析的研究。
  • 交通语义分割.pdf
    优质
    本文探讨了在自动驾驶领域中交通场景的语义分割技术,分析并改进现有算法,以提高自动驾驶汽车对复杂道路环境的理解和应对能力。 面向自动驾驶的交通场景语义分割.pdf 这篇文章主要探讨了在自动驾驶领域内如何进行有效的交通场景语义分割技术研究与应用。通过分析当前自动驾驶系统面临的挑战以及现有解决方案,该论文提出了新的方法和技术来提高识别精度及效率,以更好地服务于智能驾驶的发展需求。
  • 应用高性能实时语义分割
    优质
    本研究聚焦于开发适用于自动驾驶领域的高效能实时语义分割技术,旨在提升车辆环境感知能力与决策性能。 图像语义分割是计算机视觉领域的一项基础且极具挑战性的任务,其目标在于为图像中的每个像素分配类别标签,在驾驶辅助、室内室外场景解析及三维场景建模等应用中发挥着越来越重要的作用。近年来,深度卷积神经网络(DCNNs)已成为解决该问题的主流方法,通过利用大量标注数据训练模型以获得最佳拟合效果。然而,现有技术通常采用堆叠多个卷积层等方式构建复杂网络结构,在取得显著性能提升的同时也带来了严重的内存消耗和延迟等问题,这使得这些方法难以应用于自动驾驶、增强现实及物联网等实时应用场景中。
  • 激光雷达和相机协同校准
    优质
    本文深入探讨了在自动驾驶领域中激光雷达与相机之间的协同校准技术,旨在提高传感器数据融合精度,增强车辆环境感知能力。 针对相机标定问题,在经典张正友标定法的基础上进行了改进,引入了完整的畸变模型,并完善了原有的标定模型,从而提高了得到的相机参数精度。使用经过改进后的相机进行了一系列实验,包括算法可行性测试、点位偏移分析、不同算法对比以及基于单目相机的目标测量精度评估。这些实验结果表明本段落提出的算法具有较好的实用性和较高的精度,为后续采用棋盘格联合标定法提供了支持。 在完成相机的精确标定后,进行了激光雷达与相机的联合标定实验。首先利用已知的相机内、外参数获取棋盘格图像中的位姿信息,并通过激光雷达收集到的点云数据来计算相应的坐标系下的姿态信息。随后,运用LM算法优化以获得最优参数。 另外还使用特征点法进行了类似的联合标定实验,设计了一种特殊的三面标定板用于提取不同平面的空间方程和初始点云。通过对这些空间关系进行分析获取到特征点在雷达坐标系中的位置,并从图像中确定相应的像素坐标建立相关方程,最终利用最小二乘法计算得到所需的标定参数。 本段落通过多个实验验证了上述算法的有效性,结果表明两种方法各有优势:棋盘格法具有更高的精度但运算较为复杂;而特征点法则在效率上表现更佳。
  • 基于三维目标检测
    优质
    本研究聚焦于探索和优化自动驾驶系统中的三维目标检测技术,旨在提升车辆对周围环境的理解能力与安全性。通过分析现有算法及应用案例,本文提出改进方案以应对复杂多变的道路场景挑战。 论文结合激光雷达点云数据与单目相机图像数据,并运用深度学习方法进行了三维目标检测任务的研究,包括理论分析、方法验证及结果分析等方面的工作。主要研究内容如下: (1) 对国内外经典三维目标检测算法及其当前研究状况进行调研。首先对基于深度学习的三维目标检测算法的发展历程和原理进行了深入探讨,分析了其性能提升的原因,并详细解析了几种经典的三维目标检测算法。针对自动驾驶应用中常用的传感器(相机与激光雷达)的工作机制及类型分类做了进一步的研究,根据数据类型、表示方式以及处理方法的不同对主流算法进行分类比较,讨论这些技术在自动驾驶领域的优缺点及其未来的发展方向。 (2) 研究了基于稀疏点云体素化的三维目标检测技术。鉴于激光雷达点云数据通常具有稀疏性和大量数据的特点,本段落改进了一种适用于这种场景的三维目标检测算法。该算法将空间划分为一系列体素网格,并利用基于稀疏卷积的技术来快速地从这些网格中提取出二维形式的数据(即立柱体素),从而提高了训练和检测的速度。 (3) 探讨了基于深度估计技术在单目图像上实现三维目标检测的方法。
  • 于无人车道检测
    优质
    本研究聚焦于无人驾驶技术中的车道检测问题,通过分析当前算法和技术瓶颈,探索提升车辆自主识别与导航精度的方法。 本段落提出了一种在MATLAB平台上基于Hough变换的无人驾驶车道线检测算法。首先对采集的道路图像进行预处理以提高车道线检测准确性;然后通过边缘检测提取车道线特征信息;接着,在分析现有技术的基础上,提出了新的基于Hough变换的车道线检测方法的整体思路,并讨论了该算法在实时道路环境中的应用可行性及其精度表现。实验结果显示,所提方法的检测精度达到82.5%,并且具有较高的稳定性,证明其有效性。
  • 中激光雷达测距
    优质
    本研究聚焦于自动驾驶领域中的关键传感器——激光雷达,深入探讨其测距原理、性能优化及应用场景,旨在推动无人驾驶技术的发展与成熟。 本课题致力于研究适用于自动驾驶场景的激光雷达测距技术,并具有多种优点。论文首先介绍了不同类型的激光雷达(包括机械式、混合式、固态式)以及主流车载激光测距技术。重点分析并对比了脉冲式与相位式激光测距技术的优势和劣势。 结合大气中激光传输理论及激光雷达的测距原理,设计了一种结构简单且成本低廉的测距方案。该方案通过发射频率为20MHz、重复频率为1MHz的周期性正弦信号,并采用全相位FFT方法实现厘米级别的精确度。 为了验证本课题所提出的技术方案的有效性和精度,我们构建了一个测试系统来研究激光发射模块、回波信号接收模块和数据处理模块中的关键技术。使用Quartus II软件设计DDS信号发生器程序以控制DA芯片产生调制信号,在接收端则通过放大电路对光电转换后的回波信号进行IV转换,并利用Pspice软件进行瞬态分析。 我们还设计了脉冲转换电路,将回波信号转化为适合测时芯片处理的脉冲形式。在Quartus II中开发出针对信号模数转换(AD)采样控制程序来管理AD芯片的操作,同时使用FFT IP核设计全相位FFT鉴相程序,并通过CORDIC算法计算相位。 最后,在搭建完成的测试系统上进行了实验验证,确保了测距精度在2.5米以内的范围内。
  • 下车路协同及未来展望(2021)(70页).pdf
    优质
    该PDF文档深入探讨了在自动驾驶背景下车路协同所需的关键技术支持与发展趋势,并对未来进行了展望。共计70页,内容详实全面。 面向自动驾驶的车路协同关键技术与展望(2021)是一份70页的研究报告,探讨了在自动驾驶领域内车路协同技术的发展趋势、关键技术和未来发展方向。这份文档深入分析了如何通过优化车辆与道路基础设施之间的通信和协作来提升交通安全性和效率,并为相关研究者和技术开发者提供了宝贵的见解和参考。
  • 基于大数据虚拟模拟平台
    优质
    本平台专注于构建高度仿真的驾驶环境,利用海量驾驶数据支持自动驾驶技术的研发与测试,加速智能驾驶系统安全性和可靠性的提升。 为了充分利用数据资源中心在自动驾驶虚拟仿真平台建设中的经验,并满足企业在智能网联汽车研发验证方面的场景需求,解决行业在本土化功能安全评价方面的问题,数据资源中心对基于驾驶场景大数据的自动驾驶虚拟仿真平台建设进行了全面总结。从驾驶场景研究和分类、场景数据采集、处理与分析、构建场景数据库以及搭建虚拟仿真平台这五个层面深入探讨并阐述了相关技术细节,从而为行业提供了切实可行的技术支持。
  • 压缩文件内容包括:-汽车决策与控制、-定位-概论、-汽车平台基础及-系统设计等。
    优质
    本课程涵盖自动驾驶核心技术,包括汽车决策与控制、定位技术、技术概论、平台技术基础及系统设计等方面内容。 压缩文件内包含以下内容:自动驾驶-汽车决策与控制、自动驾驶-定位技术、自动驾驶-技术概论、自动驾驶-汽车平台技术基础、自动驾驶-系统设计及应用、自动驾驶仿真蓝皮书以及传感器原理和应用。