Advertisement

在PyTorch-CIFAR-10中,ResNet18未采用预训练模型时测试集准确率达到96.2%

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:IPYNB


简介:
本研究展示了在CIFAR-10数据集上使用纯随机初始化的ResNet18架构,在不依赖任何预训练权重的情况下实现了96.2%的高测试精度,为轻量级模型的有效性提供了新的见解。 使用PyTorch-CIFAR-10库,在不采用预训练模型的情况下,通过ResNet18网络结构实现了96.2%的测试集准确率。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PyTorch-CIFAR-10ResNet1896.2%
    优质
    本研究展示了在CIFAR-10数据集上使用纯随机初始化的ResNet18架构,在不依赖任何预训练权重的情况下实现了96.2%的高测试精度,为轻量级模型的有效性提供了新的见解。 使用PyTorch-CIFAR-10库,在不采用预训练模型的情况下,通过ResNet18网络结构实现了96.2%的测试集准确率。
  • 基于 ResNet18 和 SENet 的 Cifar10 分类 95.66%,为 90.77%
    优质
    本研究利用ResNet18和SENet架构对Cifar10数据集进行分类,通过优化网络结构实现高达95.66%的训练精度与90.77%的测试精度,展现了模型在小图像识别上的高效性。 使用TensorFlow2结合ResNet18与SENet架构实现了CIFAR-10数据集的分类任务,在训练阶段达到了95.66%的准确率,并在测试阶段取得了90.77%的准确率。
  • PyTorch ResNet18
    优质
    简介:PyTorch ResNet18预训练模型是一种深度学习架构,适用于图像分类任务。基于ResNet网络,此模型在大规模数据集上预先训练,方便用户快速应用于各类视觉识别问题。 将模型下载到C:\Users\用户名\.cache\torch\checkpoints目录。
  • PyTorch实现:ResNet18网络Cifar10数据95.46%的性(从零开始)
    优质
    本项目采用PyTorch框架,从头开始构建并训练了一个ResNet18模型于CIFAR-10数据集上,最终实现了高达95.46%的测试准确率。 使用Pytorch实现ResNet18网络训练Cifar10数据集,并达到95.46%的测试准确率(从零开始,不使用预训练模型)。
  • 使TensorFlow 2.1实现CIFAR-10的ResNet、SENet和Inception88.6%
    优质
    本项目采用TensorFlow 2.1框架,成功实现了ResNet、SENet及Inception三种深度学习架构在CIFAR-10数据集上的高效训练,并达到了88.6%的高精度识别率。 环境:TensorFlow 2.1,推荐使用GPU。 模型: - ResNet:将前一层的数据直接传递到下一层,以减少数据在传播过程中丢失。 - SENet:学习每一层通道之间的关系。 - Inception:每层采用不同大小的卷积核(如1×1、3×3和5×5)来防止因使用过小或过大卷积核而无法捕捉图片特征。 使用ResNet,SENet和Inception网络在Cifar10 或 Cifar 100上进行训练。具体表现如下: - 训练集准确率:约97.11% - 验证集准确率:约90.22% - 测试集准确率:88.6% 使用GPU时,训练时间约为一小时多。 权重大小为21。
  • 基于PyTorch的ResNet-18CIFAR-10数据上的
    优质
    本项目提供了一个使用PyTorch框架实现的深度学习模型——ResNet-18,在标准图像分类任务CIFAR-10上进行了预训练,适用于快速迁移学习应用。 PyTorch的ResNet-18在CIFAR-10数据集上有预训练模型可用。
  • 使TensorFlow 2.1CIFAR-10的实战代码,88.6%,包括ResNet、SENet和Inception...
    优质
    本项目采用TensorFlow 2.1框架,通过ResNet、SENet及Inception等模型对CIFAR-10数据集进行训练,实现高达88.6%的分类准确率。 在使用TensorFlow 2.1版本进行GPU模型训练的背景下,本段落介绍了三种网络架构的应用:ResNet、SENet 和 Inception。 - ResNet: 这种结构允许前一层的数据直接传递到下一层中,以减少数据在网络传播过程中可能发生的丢失。 - SENet: 它专注于学习每一层内部通道之间的关系,从而提升模型的学习效率和准确性。 - Inception: 每个层级使用不同尺寸的核(如1×1、3×3 和 5×5)来捕捉图像特征,避免因核大小不合适而无法有效提取到关键信息的问题。 通过结合这三种网络架构,在Cifar10 或 Cifar 100 数据集上进行模型训练。在这一过程中: - 训练数据准确率达到了约97.11%。 - 验证集上的表现约为90.22%。 - 测试集中,最终的准确性为88.6%。 整个训练过程大约需要一小时的时间,在GPU的支持下完成。模型权重大小则控制在了21左右。
  • PyTorch ResNet18与ResNet50的官方
    优质
    本文介绍了如何使用PyTorch加载和应用ResNet18及ResNet50的官方预训练模型,适用于图像分类任务。 PyTorch官网提供了两个预训练模型文件:resnet18的文件名为resnet18-5c106cde.pth,而resnet50的文件名为resnet50-19c8e357.pth。这两个文件通常会被打包在一起提供下载。
  • MNIST和CIFAR-10数据AlexNet
    优质
    本研究探讨了使用经典卷积神经网络AlexNet,在标准手写数字识别(MNIST)及图像分类(CIFAR-10)数据集上的训练效果与性能表现。 使用TensorFlow实现训练Alexnet网络,并应用于MNIST数据集和CIFAR数据集的训练。在测试阶段,对于MNIST数据集达到了0.986的准确率。由于输出大小不同,不需要下载权重文件。
  • CIFAR-10:利Keras实现88%的分类
    优质
    本项目使用Python深度学习库Keras在CIFAR-10数据集上构建并训练模型,最终实现了高达88%的图像分类准确率。 该项目旨在使用CNN预测CIFAR-10数据集的标签,并采用Keras进行深度学习实施。几乎所有代码都是以IPython笔记本的形式呈现。最终精度分类错误指标图是项目的一部分,该图依赖于Jupyter、Keras以及TensorFlow和Matplotlib库。 内容包括: - Helper功能:帮助程序用于将数据解码并获取到IPython笔记本中。 - Basic功能:测试助手功能,并列出数据集中的图像。 - Simple CNN:从Keras示例中提取的简单CNN实现,以IPython Notebook形式展示。 - Improved CNN:使用具有图像增强特性的纯CNN网络来降低模型准确性的IPython Notebook。 项目还包括保存的不同模型文件(.h5)。