Advertisement

开关电源的功率因数校正设计及应用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《开关电源的功率因数校正设计及应用》一书专注于探讨如何通过有效的电路设计改善开关电源的效率和性能,详细介绍了功率因数校正技术及其在实际中的应用。 功率因数是指在交流电路中,有功功率与视在功率的比例关系。它反映了电源设备的效率及电气系统的质量状况。 校正功率因数的方法主要通过增加无功补偿装置来实现。常见的方法包括使用电容器组、静止同步补偿器(STATCOM)等技术手段进行动态调节或静态调整,从而提高电力系统的工作效率和稳定性。 中心思想在于提升电网中设备的利用效率,减少能源损耗,并改善供电质量。这不仅能帮助用户降低电费支出,还能减轻对公共电网的压力。 例如,在工业生产领域内广泛应用了功率因数校正技术来优化电动机、变压器等负载运行状态;在建筑照明系统里也引入类似的措施以达到节能降耗的目的。这些应用案例证明了合理地进行功率因素调整对于提高电力使用效率具有重要意义。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《开关电源的功率因数校正设计及应用》一书专注于探讨如何通过有效的电路设计改善开关电源的效率和性能,详细介绍了功率因数校正技术及其在实际中的应用。 功率因数是指在交流电路中,有功功率与视在功率的比例关系。它反映了电源设备的效率及电气系统的质量状况。 校正功率因数的方法主要通过增加无功补偿装置来实现。常见的方法包括使用电容器组、静止同步补偿器(STATCOM)等技术手段进行动态调节或静态调整,从而提高电力系统的工作效率和稳定性。 中心思想在于提升电网中设备的利用效率,减少能源损耗,并改善供电质量。这不仅能帮助用户降低电费支出,还能减轻对公共电网的压力。 例如,在工业生产领域内广泛应用了功率因数校正技术来优化电动机、变压器等负载运行状态;在建筑照明系统里也引入类似的措施以达到节能降耗的目的。这些应用案例证明了合理地进行功率因素调整对于提高电力使用效率具有重要意义。
  • 案例分析
    优质
    本文详细探讨了开关电源中功率因数校正(PFC)电路的设计原理及其优化方法,并通过具体应用案例深入分析了其在实际工程中的效果和挑战。 开关电源功率因数校正电路设计与应用实例 1. 功率因数定义及校正技术 1.1 功率因数定义及谐波 1.2 功率因数校正控制技术 1.2.1 功率因数校正控制方法 1.2.2 功率因数校正电路控制器 1.2.3 功率因数校正技术发展动态 第2章 功率因数校正电路 2. 无源PFC校正技术 2.1 无源PFC电路 2.2 改进型无源PFC电路 2.3 单相无源PFC整流器的电路拓扑 3. 有源功率因数校正(APFC)电路 3.1 APFC电路工作原理及分类 3.2 APFC变换器中电流型控制技术 3.3 主频同步控制PFC电路 3.4 输入电流间接控制的APFC电路 3.5 临界导电模式APFC电路 3.6 DCVM模式工作的Cuk变换器的APFC 4. 复合型单开关PFC预调节器及基于SEPIC的PFC电路 4.1 复合型单开关PFC预调节器 4.2 基于SEPIC的PFC电路 5. 软开关PFC电路 5.1 单相三电平无源无损软开关PFC电路 5.2 单相Boost型软开关PFC电路 6. 单级隔离式PFC 6.1单级PFC技术 6.2单级PFC变换器的功率因数校正效果分析 6.3单级PFC电路的直流母线电压 6.4单级PFC变换器的设计 6.5基于Flyboost模块的新型单级PFC电路 6.6恒功率控制的单级PFC电路 第3章 功率因数校正电路集成控制器 1. UC/UCC系列PFC集成控制器 1.1 UC3852 PFC集成控制器 1.2 UC3854 PFC集成控制器 1.3 UC3854A/B PFC集成控制器 1.4 UCC3858 PFC集成控制器 1.5 UCCx850x0 PFC/PWM组合控制器 2. TDA系列PFC集成控制器 2.1 TDA16888 PFC集成控制器 2.2 TDA4862 PFC集成控制器 2.3 TDA16846 PFC集成控制器 3. 其他系列PFC集成控制器 3.1 ML4841 PFC集成控制器 3.2 ML4824复合PFC/PWM控制器 3.3 FA5331P(M)/FA5332P(M)PFC集成控制器 3.4 L4981 PFC集成控制器 3.5 NCP1650 PFC集成控制器 3.6 HA16141 PFC/PWM集成控制器 3.7 MC34262 PFC集成控制器 3.8 FAN4803 PFC集成控制器 3.9 CM68/69xx PFC/PWM集成控制器 第4章 功率因数校正电路设计实例 1. 基于UC3852的PFC电路设计实例 2. 基于UC3845的PFC电路设计实例 3. 基于UC3854A/B的PFC电路设计实例 4. 基于UCC28510的PFC电路设计实例 5. 基于UCC3858的PFC电路设计实例 6. 基于TOPSwitch的PFC电路设计实例 7. 基于ML4824的PFC电路设计实例 8. 基于TDA16888的PFC电路设计实例 9. 基于MC33260的PFC电路设计实例 10.基于NCP1650/1的PFC电路设计实例 参考文献
  • 路在
    优质
    本论文探讨了有源功率因数校正(PFC)电路的设计与优化,并分析其在开关电源系统中的应用效果。通过提高输入电流波形质量,有效改善能源效率和减少电磁干扰问题,为节能减排提供技术支持。 有源功率因数校正(APFC)能够减少用电设备对电网的谐波污染,并提高电器设备输入端的功率因数。本段落详细分析了APFC的工作原理,并采用平均电流控制模式进行设计,提出了一种基于UC3854BN芯片的有源功率因数校正电路方案。文中着重讨论了该电路中主要参数的选择和设计方案。实践证明,在应用APFC后,输入电流中的谐波分量显著减小,实现了有效的功率因数校正。
  • (PFC)工作原理.pdf
    优质
    本文档深入探讨了开关电源中的功率因数校正(PFC)技术及其工作原理,旨在提高电力转换效率和能源利用率。 传统的开关电源存在一个关键缺陷:功率因数较低,通常在0.45到0.75之间。此外,其无功分量主要由高次谐波构成,其中3次谐波的幅度与基波相近。
  • 原理、控制IC(2007)
    优质
    本书《功率因数校正的原理、控制IC及应用设计》深入浅出地阐述了功率因数校正技术的基本原理,详细介绍了多种功率因数控制器及其在实际电路中的应用设计。 功率因数校正原理与控制IC及其应用设计(2007年版)探讨了如何通过使用先进的集成电路来优化电力系统的效率,特别是在提高交流电转换为直流电过程中的能量利用率方面。该文详细介绍了功率因数校正的基本概念、工作原理以及相关的电路设计方案,并深入讨论了几种常用的控制IC的特点和应用实例。通过对这些技术的分析与研究,可以更好地理解如何在实际工程中实现高效的电力管理方案。
  • 其控制方法
    优质
    本研究聚焦于有源功率因数校正电路的设计与优化,探讨其控制策略,旨在提高电力转换效率和能效比。通过创新算法提升电路性能,减少能源浪费,适用于多种电子设备。 从开关变换器的基本拓扑结构出发,本段落探索了一种简单且易于实现的控制方式。基于正向输出Buck-Boost变换器的工作原理,提出了一种新的功率因数校正电路设计,并提供了相应的控制策略及仿真结果。该电路能够通过电压跟随的方式完成PFC功能。由于其具备降压输出的特点,降低了对所有功率开关管耐压的要求,从而有助于提高转换效率并减少成本。
  • 基于MC34262仿真
    优质
    本研究设计并仿真了一种基于MC34262芯片的有源功率因数校正电路,旨在提高电力转换效率和质量。 本段落探讨了升压型电路的工作原理,并对比分析了有源功率因数校正电路的两种模式及其优缺点。基于临界导通模式(BCM)控制方式,结合Motorola公司的MC34262芯片在零电流开通和减少开关损耗方面的优点,提出了采用MC34262芯片设计的有源功率因数校正电路方案,并利用MATLAB建立了仿真模型进行验证。通过仿真的波形结果可以看出,MC34262在提高功率因数值方面具有良好的应用前景。
  • Boost路.zip
    优质
    本资源包含一种高效的Boost功率因数校正(PFC)电路设计方法及其实现方案,适用于电力电子领域的研究与应用开发。 随着电力电子技术的进步,电力电子产品在各个领域的广泛应用导致了电网污染问题的加剧,对电力电子技术提出了更高的要求。采用现代高频功率变换技术的有源功率因数校正(PFC)技术是解决谐波污染最有效的方法之一。因此,本段落主要分析和研究单相Boost型PFC电路。 首先,文章介绍了功率因数校正技术的研究背景和技术发展,并对不同类型的PFC进行了简要分类介绍。随后,详细设计了适用于Boost PFC电路的控制电路。最后,通过仿真验证实验参数的设计合理性以及Boost PFC电路的功能性能。
  • 基于UC3854工作原理
    优质
    本文介绍了基于UC3854芯片设计的有源功率因数校正(PFC)电路工作原理及其在电源系统中的应用,旨在提高效率和性能。 有源功率因数校正(APFC)技术是电源管理领域内用于改善电能质量的一种方法,其目的是使交流输入电流波形与电压波形同步,尽量消除输入电流的谐波分量和谐波失真,从而提高功率因数并减少对电网的影响。UC3854是一款常用于APFC控制的集成电路,在控制电路中引入了前馈和乘法器、除法器,并采用平均电流控制方式(CCM)运作。 功率因数(PF)是衡量交流电力系统电能使用效率的重要参数,定义为有功功率与视在功率的比例。它由输入电流失真系数和相移因子的乘积决定。低功率因数会导致无功功率增大、设备利用率低下以及导线和变压器损耗增加;同时还会导致电网污染及中性线电压偏移,并可能损坏用电设备。 为了提升供电线路中的功率因数并保护电气装置免受谐波干扰,许多国家和地区制定了限制谐波电流含量的技术标准。例如IEC555-2、IEC61000-3-2和EN60555-2等国际规范以及中国制定的《电能质量公用电网谐波》(GBT14549-93)。 功率因数校正可以通过两种主要方式实现:使输入电压与电流同相位或让输入电流呈现正弦波形。采用这种技术可以使得交流输入电流完全跟随交流电压,从而使整流器负载等效为纯电阻。这类电路有时也被称作“仿真电阻”。 有源功率因数校正(APFC)电路按结构可分为四种类型:降压式、升降压式、反激式和升压式。其中,升压型由于其简单的设计、电流模式控制以及高PF值、低THD和高效性而被广泛应用。这种类型的APFC电路在输出电压高于输入时仍能保持较高的功率因数,并适用于广泛的电力需求场景。 根据输入电流的调节原理,APFC电路主要分为三种类型:平均电流型、滞后电流型和峰值电流型。平均电流控制模式具有恒定频率操作、连续输入电流以及小型EMI滤波器等优点;但其缺点是控制系统复杂且需要乘法器与除法器支持。UC3854作为典型的平均电流控制器,广泛应用于升压式APFC电路中。 在实际应用过程中,UC3854展现了卓越的性能,在提高功率因数和降低谐波失真方面表现尤为突出。通过使用该IC,设备可以更加高效地运行,并且减少了电网污染以及提高了用电装置的工作效率。