Advertisement

OFDM系统中的深度学习应用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了在正交频分复用(OFDM)通信系统中应用深度学习技术的方法与效果,旨在优化信号处理和提高数据传输效率。 本资源是文献《Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems》的代码部分。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • OFDM
    优质
    本研究探讨了在正交频分复用(OFDM)通信系统中应用深度学习技术的方法与效果,旨在优化信号处理和提高数据传输效率。 本资源是文献《Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems》的代码部分。
  • 在推荐
    优质
    本文章探讨了深度学习技术如何革新推荐系统的运作方式,通过分析用户行为和偏好,提高个性化推荐的准确性和效率。 ### 推荐系统遇上深度学习 #### 一、FM模型理论和实践 ##### 1、FM背景 在当今数字化时代,推荐系统已经成为电子商务、在线广告等领域的重要竞争力之一。推荐系统的准确性直接影响用户体验及企业的经济效益。其中,点击率预估(Click-Through Rate, CTR)是衡量推荐系统性能的关键指标之一。CTR预估是指预测用户点击某个推荐项的概率,对于判断一个商品或服务是否应该被推荐给特定用户至关重要。 在CTR预估过程中,除了需要考虑单一特征外,特征之间的组合也是非常重要的因素。业界通常有两种主流的方法来处理特征组合:一种是基于因子分解机(Factorization Machine, FM)的方法;另一种是基于树模型的方法。本段落重点介绍FM模型的相关理论和实践。 ##### 2、One-Hot 编码带来的问题 在处理分类特征时,通常会采用One-Hot编码方法。这种方法能够将类别特征转换为多个二进制特征,每个二进制特征代表原始特征的一个可能取值。例如,“性别”这一属性有两类:“男”和“女”,使用One-Hot编码后会被拆分为两个二进制变量。 虽然One-Hot编码有效处理了分类数据,但也存在以下两大主要问题: - **数据稀疏性**:在某些场景下,特征的维度可能会非常高。例如,在一个电商平台有100万种不同商品的情况下,“商品ID”这一属性进行One-Hot编码后会产生100万个特征值。 - **特征空间膨胀**:使用One-Hot编码会导致特征空间急剧增加,对于大规模数据集而言这会大大提升模型的复杂性和计算成本。 ##### 3、对特征进行组合 传统的线性模型仅考虑各特征独立的影响,忽略了它们之间的潜在关系。例如,在电商领域女性用户更倾向于浏览化妆品和服装,而男性用户则可能更多关注体育用品。因此,找到这些关联对于提高推荐效果至关重要。 为了捕捉到这种特征间的相互作用可以采用多项式模型,其中最常见的形式是二阶多项式模型。该类模型不仅考虑了各特征的独立效应还加入了它们之间的交叉项以更好地模拟特征间的关系。 ##### 4、FM求解 FM(Factorization Machine)模型是一种专门用于解决高维稀疏数据中特征组合问题的方法。它通过引入辅助向量来估计特征间的相互作用强度,对于每个特征分配一个k维的向量并通过这些向量之间的内积计算出它们的关系。 在FM模型中,两个不同特征间相互作用权重ω_ij可以通过下述方式获取: \[ \omega_{ij} = \sum_{k=1}^{K} v_{ik}v_{jk}\] 这里\(v_{ik}\)和\(v_{jk}\)分别是特征i和j在第k维空间中的向量分量,而K是预先设定的维度大小。 为了求解这些辅助向量通常采用随机梯度下降法(Stochastic Gradient Descent, SGD)进行迭代优化。通过调整向量值使得模型对训练数据拟合程度达到最优状态。 ##### 5、TensorFlow代码实现 FM模型可以在多种机器学习框架中实现,这里提供一个基于TensorFlow的示例代码片段展示了如何使用该库构建并训练一个FM模型。这段代码实现了FM的核心逻辑并通过SGD优化器进行了参数更新: ```python import tensorflow as tf import numpy as np class FactorizationMachine(tf.keras.Model): def __init__(self, num_features, embedding_size): super(FactorizationMachine, self).__init__() self.linear = tf.keras.layers.Dense(1) self.embedding = tf.keras.layers.Embedding(input_dim=num_features, output_dim=embedding_size) def call(self, inputs): linear_part = self.linear(inputs) embeddings = self.embedding(inputs) square_of_sum = tf.square(tf.reduce_sum(embeddings, axis=1)) sum_of_square = tf.reduce_sum(tf.square(embeddings), axis=1) fm = 0.5 * (square_of_sum - sum_of_square) output = linear_part + fm return tf.nn.sigmoid(output) model = FactorizationMachine(num_features=100000, embedding_size=10) loss_object = tf.keras.losses.BinaryCrossentropy() optimizer = tf.keras.optimizers.Adam() train_loss = tf.keras.metrics.Mean(name=train_loss) train_accuracy = tf.keras.metrics.BinaryAccuracy(name=train_accuracy) @tf.function def train_step(features, labels): with tf.GradientTape() as tape: predictions = model(features) loss = loss_object(labels, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) train_accuracy(labels, predictions) for epoch in
  • 在推荐:DeepRecommender
    优质
    DeepRecommender是一款基于深度学习技术的高效推荐系统解决方案。通过分析用户行为数据,实现个性化内容推送,优化用户体验与产品价值。 本段落介绍了Deep Recommender的另一个版本,该版本使用深度学习技术来改进推荐系统。此版本是用Python和Scala开发的,并且利用数据进行训练以提高模型性能。有关NVIDIA研究项目的更多详细信息,请参考相关文献或直接联系项目团队获取更多信息。
  • ROS方法
    优质
    本研究探讨了在机器人操作系统(ROS)环境中应用深度学习技术的方法与挑战,旨在提升机器人的感知、决策及交互能力。 本段落分享了关于ROS暑期学校的讲义内容。讲义介绍了深度学习方法在ROS中的应用,并通过实例详细讲解了深度卷积神经网络在计算机视觉领域的具体应用场景。最后部分探讨了如何将深度学习技术与ROS融合,以Caffe为例展示了两者集成开发的方法。
  • 迁移强化
    优质
    简介:本文探讨了迁移学习如何改善深度强化学习模型的表现,通过知识转移机制解决样本不足和泛化能力弱的问题。 本段落综述了迁移学习在强化学习问题设置中的应用。RL已经成为解决序列决策问题的关键方法,并且随着其在各个领域的快速发展(如机器人技术和游戏),迁移学习成为通过利用外部专业知识来促进RL过程的一项重要技术。
  • 生物信息
    优质
    本研究聚焦于生物信息学领域内深度学习技术的应用与进展,探讨其在基因组分析、蛋白质结构预测及药物发现等方面的重要作用。 基因增强子在深度学习中的预测方法及应用。
  • 基于NOMA-OFDM信道估计方法
    优质
    本研究提出了一种基于深度学习的非正交多址接入正交频分复用(NOMA-OFDM)系统的信道估计新方法,有效提升了通信系统的性能和效率。 使用深度学习技术对 NOMA-OFDM 系统进行信道估计是 NOMA-OFDM-DL 系列研究的一部分。该系列专注于利用先进的机器学习方法来改善非正交多址接入(NOMA)与正交频分复用(OFDM)结合系统的性能,特别是在复杂无线通信环境下的信道状态信息获取方面。通过深度学习模型的应用,可以更有效地估计和预测信道特性,从而提升数据传输的效率和可靠性。
  • Numpy 在基础
    优质
    本教程介绍如何在深度学习中使用Numpy进行数据处理和科学计算的基础知识与实用技巧。 深度学习Numpy基础,仅供学习交流使用,不做商业用途。
  • 推荐领域
    优质
    本文章综述了深度学习技术在各个领域的应用现状与发展趋势,重点探讨其在前沿科技中的革新作用。特别关注于深度学习如何推动行业进步并解决实际问题。 当2012年Facebook推出定制化受众(CustomAudiences)功能后,“受众发现”这一概念开始大规模应用。“受众发现”的核心在于,即便你的企业已经积累了一定数量的客户,并且这些客户无论是否关注你或在Facebook上与你们互动,都可以通过Facebook广告系统触达到他们。具体来说,“受众发现”实现了无需手动选择用户标签(如基本信息、兴趣等),只需要上传一批现有客户的名单或者对特定群体感兴趣的人群列表即可。之后,CustomAudiences会根据这些信息自动定位并投放广告给目标人群。