Advertisement

基于ADAMS和MATLAB的自平衡双轮车混合模型构建(2013年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文介绍了利用ADAMS与MATLAB软件结合的方法,构建了一种自平衡双轮车的混合仿真模型,并进行了详细的分析研究。该方法能够有效提高模拟精度及效率,为双轮车的设计和优化提供了新思路和技术支持。 通过实车设计数据,在ADAMS软件上建立多体动力学模型,并与MATLAB/Simulink结合形成混合仿真模型。同时利用现有的自平衡双轮车数学模型以及所研制车辆的设计参数,构建出MATLAB/Simulink模型。对这两种模型施加相同的输入后进行仿真分析。通过比较两种仿真的结果发现,ADAMS和MATLAB的混合建模方法能够准确地反映出自平衡双轮车的实际运动状态,表明基于ADAMS技术的这种混合模型为机电系统的动力学仿真提供了一种新的构建方式。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ADAMSMATLAB(2013)
    优质
    本文介绍了利用ADAMS与MATLAB软件结合的方法,构建了一种自平衡双轮车的混合仿真模型,并进行了详细的分析研究。该方法能够有效提高模拟精度及效率,为双轮车的设计和优化提供了新思路和技术支持。 通过实车设计数据,在ADAMS软件上建立多体动力学模型,并与MATLAB/Simulink结合形成混合仿真模型。同时利用现有的自平衡双轮车数学模型以及所研制车辆的设计参数,构建出MATLAB/Simulink模型。对这两种模型施加相同的输入后进行仿真分析。通过比较两种仿真的结果发现,ADAMS和MATLAB的混合建模方法能够准确地反映出自平衡双轮车的实际运动状态,表明基于ADAMS技术的这种混合模型为机电系统的动力学仿真提供了一种新的构建方式。
  • 电动与运动控制(2014)
    优质
    本研究聚焦于设计和开发一种基于独轮的自平衡电动车模型,并探讨其运动控制策略。通过创新性地结合机械工程、电子技术和自动控制理论,论文详细分析了该电动车的动力学特性及其实现稳定行驶的关键技术方案,为同类产品提供了宝贵的设计参考与实践指导。 为了设计新型、环保且便捷的智能代步工具,我们建立了一款独轮自平衡电动车物理系统。利用拉格朗日方法建立了人车一体的动力学模型,并对系统进行了特性分析。此外,还为该独轮车系统设计了比例微分(PD)平衡控制器,并对其分别进行了自平衡、冲击干扰和阶跃干扰实验。实验结果表明,这款独轮自平衡电动车具有良好的鲁棒性和操控性,证明了设计方案的合理性和有效性。
  • 项目
    优质
    自平衡双轮车项目致力于研发智能、环保且高效的个人短途交通工具。通过先进的传感器技术和算法实现自动平衡控制,为用户提供安全便捷的出行体验。 这段内容包含了电机选取的信息、钣金图纸、SolidWorks 3D模型、PCB板图、原理图以及控制程序等相关资源。
  • STC15
    优质
    STC15双轮自平衡小车是一款基于STC15单片机控制技术开发的智能移动平台,通过精密的传感器和算法实现自动保持平衡及灵活移动。 51单片机实现的两轮自平衡车代码清晰、结构明了,具有很高的参考价值。
  • Matlab SimulinkCruise动力汽
    优质
    本研究利用MATLAB/Simulink与CRUISE软件搭建了混合动力汽车仿真平台,旨在优化车辆性能及燃油经济性。通过多物理系统建模,深入分析并改进混合动力系统的控制策略。 在现代汽车工程领域,混合动力汽车(Hybrid Electric Vehicle, HEV)的开发与研究是一项关键技术。MATLAB Simulink和Cruise是两种强大的工具,分别用于系统级建模和控制算法设计。本主题将深入探讨如何利用这两个工具构建混合动力汽车的详细模型。 **MATLAB Simulink** MATLAB Simulink是一款由MathWorks公司提供的图形化建模环境,它支持多领域动态系统的仿真和代码生成。在混合动力汽车模型中,Simulink能够帮助工程师直观地表示复杂的系统交互,如动力系统、电池管理系统、能量管理策略等。 1. **动力系统建模**:在Simulink中,可以构建内燃机、电动机、电池、发电机等组件的数学模型。这些模型描述了不同组件的动力学行为,包括功率输出和效率曲线。 2. **能量管理策略设计与模拟**:利用Simulink可设计并仿真各种能量管理方案(如最优能源管理和预测控制),以优化HEV燃油经济性和排放性能。 3. **控制系统开发**:通过Stateflow模块可以实现控制器的逻辑设计,例如电机和电池管理系统中的控制器。 4. **系统集成与仿真评估**:将各组件模型整合为一个完整的HEV模型,并利用实时仿真的方式来检验系统的整体表现、诊断潜在问题并进行参数调整。 5. **代码生成支持**:Simulink能够直接产生嵌入式软件代码,使开发人员可以直接在硬件上测试这些设计。 **Cruise** Cruise是通用汽车公司研发的一种车辆动力学和控制系统建模工具。它主要用于线控驾驶(Steering by Wire, Brake by Wire)和动力系统控制,在混合动力车模型中可与Simulink协同使用: 1. **机械模型的开发**:提供精确模拟不同工况下行驶状态所需的车辆悬架、转向及制动等部件的物理建模。 2. **控制器的设计验证**:支持控制器设计,可以将这些逻辑方案直接对接到Simulink中生成的内容上实现无缝集成。 3. **联合仿真操作**:通过MATLAB Simulink与Cruise之间的接口进行数据交换,并执行联合仿真实验以全面评估整个HEV系统的性能。 4. **硬件在环测试支持**:允许将由Simulink生成的控制代码与实际车辆组件结合,进行实时硬件测试(HIL)。 通过MATLAB Simulink和Cruise相结合的应用方式,为混合动力汽车建模提供了强大平台。这不仅有助于工程师高效设计、优化并验证复杂的HEV系统,还推动了新能源车技术的进步,并进一步提升了能效、可靠性和驾驶体验的理解与创新性研究水平。
  • STM32F4STM32设计(C/C++)
    优质
    本项目介绍一款基于STM32微控制器的双轮自平衡小车的设计与实现。通过精确控制电机,利用C/C++编程语言保持系统的动态稳定,适用于教育和科研领域。 基于STM32F407的平衡车制作提供一站式服务,旨在帮助初学者完成一个平衡车项目。从工程程序到相关应用程序以及电脑上位机软件,再到模块指令集等所有内容都会详细介绍和支持。
  • 优质
    双轮平衡车是一种创新的个人交通工具,利用陀螺仪和加速感应器来感知驾驶者的身体倾斜变化,并以此控制电机驱动车辆前进或后退。它以其独特的设计、便捷的操作和环保特性受到广泛欢迎。 资料不错,下载后解压即可使用。内容非常全面,包括照片、成品等。
  • ADAMSMATLAB控制系统仿真.zip
    优质
    本资源探讨了利用ADAMS与MATLAB软件进行自平衡车辆控制系统的建模及仿真的方法,旨在通过联合仿真技术优化系统性能。 《基于ADAMS与MATLAB的自平衡车系统控制仿真》在现代科技领域里,作为一种便捷且高效的个人交通工具,自平衡车受到了广泛关注。本项目深入探讨了如何利用多体动力学软件ADAMS(Automatic Dynamic Analysis of Mechanical Systems)和数学计算软件MATLAB进行自平衡车系统的控制仿真,以实现其动态平衡。 ADAMS是机械系统动力学分析的主流工具之一,能够对复杂的机械系统进行三维建模,并模拟实际环境下的运动及动力行为。在自平衡车的仿真中,ADAMS可以构建车辆物理模型,包括车轮、车身、电机和传感器等组件;通过设置合适的约束条件与运动方程,精确地模拟出车辆在不同条件下的动态响应。 MATLAB则以其强大的数值计算和算法开发能力,在控制系统的设计与分析方面得到广泛应用。对于自平衡车的控制策略而言,MATLAB可以建立状态空间模型,并利用PID控制器、滑模控制或自适应控制等理论来设计保持车辆稳定性的控制器;同时,Simulink环境能够实现模型可视化,方便进行仿真测试和参数调整。 在该项目中首先使用ADAMS构建机械模型并设定初始状态与边界条件(如车体重心位置、倾角及电机扭矩)。然后将生成的数据导入MATLAB,通过控制算法处理数据以设计优化控制器,在外界干扰下确保车辆快速恢复平衡。具体而言,可能涉及到PID控制——一种广泛应用的反馈控制系统;滑模控制具有良好的鲁棒性,能够应对不确定性和外部扰动;自适应控制则可在线调整参数以适应系统变化。 完成控制策略后通过MATLAB Simulink进行实时仿真观察各种情况下的车辆性能(如姿态、速度及控制器输出)。分析这些结果可以进一步优化控制方法。结合ADAMS和MATLAB开展的自平衡车动态平衡研究不仅有助于深入理解其特性,还能为实际系统的控制器设计提供支持,在推动相关技术发展中具有重要意义。
  • ADRC控制_MATLAB拟_两MATLAB项目
    优质
    本项目利用MATLAB开发了两轮小车(平衡车)的控制系统仿真模型,旨在通过算法优化实现车辆稳定与操控。 基于自抗扰控制算法的两轮平衡小车设计与实现,在MATLAB环境中进行模拟和测试。该系统能够有效提升两轮自平衡车的稳定性和响应速度,适用于多种应用场景。
  • LQR.rar_MATLAB_MATLAB_仿真
    优质
    本资源包提供基于MATLAB的双轮平衡车控制设计与仿真的代码和模型,使用线性二次型调节器(LQR)算法实现车辆稳定控制。 在双轮平衡车中进行极点配置的Matlab平衡仿真实验。