Advertisement

四轮独立驱动电动车转矩分配控制:结合CarSim和Simulink的三自由度车辆模型离散LQR控制策略及控制器设计详解

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本文详细介绍了一种基于CarSim与Simulink平台的四轮独立驱动电动汽车转矩分配控制策略,采用三自由度车辆模型并运用离散LQR方法优化控制性能。通过详尽的设计过程和仿真验证,展现了该控制器在提高电动车操控性和稳定性方面的有效性。 本段落详细介绍了四轮独立驱动电动汽车的转矩分配控制系统的设计与实现过程。首先阐述了三自由度车辆模型的基本概念及其纵向、横向及横摆运动的状态方程。随后,文章探讨了如何利用CarSim和Simulink进行联合仿真的具体步骤和技术要点,包括数据单位匹配以及通信设置等关键环节。 接着深入介绍了离散LQR控制器的设计方法,涵盖了状态权重矩阵Q与输入权重矩阵R的选择策略,并详细说明了将连续系统转化为离散系统的操作流程。此外,文中还讨论了轮胎负荷率分配算法和扭矩分配策略的应用场景,特别是在低附着力路面条件下的具体实施方式。 最后通过双移线工况测试验证控制器的实际效果并分享了一些调试经验和常见问题的解决方案。本段落旨在为从事汽车工程、自动驾驶技术和控制系统研发的专业人士提供有价值的参考信息,尤其是对于关注电动汽车及先进控制算法的研究者来说具有重要借鉴意义。 文中提供了丰富的MATLAB代码片段和实用技巧帮助读者更好地掌握相关理论和技术,并强调了实际项目开发过程中需要注意的关键点如参数一致性以及数据同步等问题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CarSimSimulinkLQR
    优质
    本文详细介绍了一种基于CarSim与Simulink平台的四轮独立驱动电动汽车转矩分配控制策略,采用三自由度车辆模型并运用离散LQR方法优化控制性能。通过详尽的设计过程和仿真验证,展现了该控制器在提高电动车操控性和稳定性方面的有效性。 本段落详细介绍了四轮独立驱动电动汽车的转矩分配控制系统的设计与实现过程。首先阐述了三自由度车辆模型的基本概念及其纵向、横向及横摆运动的状态方程。随后,文章探讨了如何利用CarSim和Simulink进行联合仿真的具体步骤和技术要点,包括数据单位匹配以及通信设置等关键环节。 接着深入介绍了离散LQR控制器的设计方法,涵盖了状态权重矩阵Q与输入权重矩阵R的选择策略,并详细说明了将连续系统转化为离散系统的操作流程。此外,文中还讨论了轮胎负荷率分配算法和扭矩分配策略的应用场景,特别是在低附着力路面条件下的具体实施方式。 最后通过双移线工况测试验证控制器的实际效果并分享了一些调试经验和常见问题的解决方案。本段落旨在为从事汽车工程、自动驾驶技术和控制系统研发的专业人士提供有价值的参考信息,尤其是对于关注电动汽车及先进控制算法的研究者来说具有重要借鉴意义。 文中提供了丰富的MATLAB代码片段和实用技巧帮助读者更好地掌握相关理论和技术,并强调了实际项目开发过程中需要注意的关键点如参数一致性以及数据同步等问题。
  • 基于CarSimSimulink: 纵向、横向横摆)- LQR方法
    优质
    本研究探讨了在三自由度车辆模型下,利用离散LQR控制策略优化基于CarSim和Simulink的四轮独立驱动电动汽车转矩分配控制系统,实现纵向、横向及横摆稳定性的提升。 四轮独立驱动电动汽车转矩分配控制采用CarSim与Simulink联合三自由度车辆模型(包括纵向、横向及横摆)的控制方法为离散LQR(包含连续系统的离散化方法和求解步骤)。该文档详细介绍了控制器的设计以及二自由度稳定性控制目标的推导过程。所使用的MATLAB版本为2018b,CarSim版本为2018。
  • 优质
    本文探讨了四轮独立驱动电动汽车的先进控制系统设计与优化策略,旨在提升车辆性能和驾驶体验。通过分析各车轮的动力分配、协调转弯及动态稳定性等关键技术问题,提出创新解决方案以实现高效能与高安全性的完美结合。 针对双移线工况下的四轮独立驱动电动汽车,本段落探讨了在Carsim-Simulink联合仿真环境中进行驱动力控制的策略。
  • 横摆力矢量仿真研究:滑PID联方法
    优质
    本研究针对四轮独立驱动电动汽车,采用滑模和PID联合控制策略进行横摆力矩调控,并探讨了最优转矩矢量分配算法,通过仿真验证其有效性和优越性。 本段落研究了四轮轮毂电机驱动车辆的横摆力矩与转矩矢量分配控制仿真,并探讨了滑模与PID联合控制策略及力矩分配方法。同时,还对四轮轮毂电机驱动车辆的DYC(直接横摆力矩控制)和TVC(转矩矢量分配)系统的分层控制策略进行了仿真研究。 整体采用分层控制策略:顶层控制器的任务是利用车辆状态信息、横摆角速度以及质心侧偏角误差,计算出维持车辆稳定性的期望附加横摆力矩。为了减少车速影响,设计了纵向速度跟踪控制器;底层控制器的任务是对顶层控制器得到的期望附加横摆力矩及驱动力进行分配,以实现整车在高速附着路面条件下的稳定性控制。 顶层控制器采用滑模控制(SMC)和PID控制方法来计算维持车辆稳定性的期望附加横摆力矩。底层控制器则使用平均分配或基于特殊目标函数优化的定制化分配方法来进行转矩矢量的分配,以实现整车在不同行驶状态下的最优性能表现。 本段落使用的驾驶员模型是CarSim自带的预瞄模型,并采用了PID速度跟踪控制器来确保车辆的速度稳定性和一致性。
  • Simulink
    优质
    本研究构建了电动汽车控制策略的Simulink仿真模型,旨在优化电池管理和驱动系统的性能,提高能源效率及车辆续航能力。 使用Simulink建立整车控制策略的基本模型,包括驱动、制动和能量回收等功能。
  • Simulink
    优质
    本研究构建了用于分析和优化电动汽车性能的Simulink模型,重点探讨电池管理系统、电机驱动以及能量回收系统的控制策略。通过仿真测试验证不同驾驶条件下算法的有效性与效率,为电动汽车的研发提供理论依据和技术支持。 使用Simulink建立整车控制策略的基本模型,包括驱动、制动和能量回收等功能。
  • 基于直接横摆力调节其应用研究:LQR数学规划方法与DYCAFS集成CarSim仿真析...
    优质
    本研究探讨了采用分层控制策略对四轮独立驱动汽车进行直接横摆力矩调节,通过整合LQR和数学规划技术优化扭矩分配,并在CarSim环境下模拟其与动态横摆控制系统(DYC)及主动前轮转向系统(AFS)的集成效果。 本段落探讨了直接横摆力矩分层控制器在四轮独立驱动汽车转矩分配中的应用,并结合动态稳定控制系统(DYC)与主动前轮转向系统(AFS)集成控制的研究,采用CarSim与Simulink联合模型进行仿真分析。研究的核心内容包括上层LQR和下层数学规划的使用,以及如何优化四轮独立驱动汽车的转矩分配性能。
  • 基于MATLAB SIMULINK布式构建,涵盖七系统功能
    优质
    本研究利用MATLAB/Simulink平台,构建了包含七自由度的分布式驱动电动汽车模型,并实现了四轮独立控制系统的设计与仿真。 使用MATLAB SIMULINK搭建分布式驱动电动汽车模型,该模型为七自由度整车模型,包括横摆、纵向、侧向以及四个轮胎的各四个自由度,并涵盖了转弯制动工况及ABS系统模型。资料详尽全面。
  • 基于CarSimSimulink线向系统仿真 LQR应用稳定性
    优质
    本研究运用CarSim与Simulink进行四轮线控转向系统的仿真,并应用离散LQR控制策略,同时开展二自由度稳定性的深入分析。 四轮线控转向控制(4WIS)的CarSim与Simulink联合控制器使用离散LQR控制器,并包含了完整详细的控制器及二自由度稳定性控制目标推导说明。MATLAB版本为2018b,CarSim版本为2018。
  • 优质
    《电动汽车的整车控制策略模型》一文探讨了优化电动汽车性能的关键技术,涵盖动力系统管理、能量分配及驾驶模式切换等核心议题。 本资源包含一个关于电动汽车整车控制策略的仿真模型,压缩包内有具体的Simulink模型和相关的说明文档。整体结构不算复杂,仅供参考。