Advertisement

C++11并发编程:使用std::thread的多线程技术

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本书专注于讲解C++11中的并发编程技术,重点介绍如何利用`std::thread`进行多线程开发。适合希望提升程序性能和响应性的C++程序员阅读。 C++11并发编程:多线程std::thread C++11引入了`thread`类,大大降低了使用多线程的复杂性。在此之前,实现跨平台的多线程程序需要依赖于系统API,并且代码移植时常常面临修改的问题。而在C++11中,通过语言层面提供的`std::thread`可以解决这些难题。 一、概述 在C++11中引入了`std::thread`类,为开发人员提供了便捷的多线程编程工具。该类包含多种构造函数、成员函数和静态方法以适应不同的应用场景需求。 二、构造函数 1. 默认构造函数 ```cpp thread() noexcept; ``` 创建一个空的`std::thread`对象。 2. 初始化构造函数 ```cpp template explicit thread(Fn&& fn, Args&&... args); ``` 创建并初始化一个新的线程,该线程将执行由给定参数指定的功能。 3. 拷贝构造函数(被禁用) ```cpp thread(const thread&) = delete; ``` 4. 移动构造函数 ```cpp thread(thread&& x) noexcept; ``` 调用成功后原来的`x`就不再是有效的线程对象了。 三、成员方法 1. `get_id()` 返回当前线程的唯一标识符,类型为`std::thread::id`。 2. `join()` 等待指定的线程执行完毕。如果该函数被调用,则会阻塞直到目标线程完成运行为止。 3. `detach()` 使一个已连接到当前对象的线程成为独立的守护进程,并且不再由这个特定的对象控制它。 4. `swap()` 交换两个`std::thread`实例的内容。 5. `hardware_concurrency()` 返回逻辑处理器的数量,通常用于指导多线程程序中的并发程度。 四、示例使用 1. 创建并启动一个新线程 ```cpp void threadFun1(){ cout << this is thread fun1 ! << endl; } int main(){ std::thread t1(threadFun1); t1.join(); getchar(); return 0; } ``` 2. 向线程传递参数并启动它 ```cpp void threadFun2(int v){ cout << this is thread fun2 ! << endl; cout << v << endl; } int main(){ std::thread t1(threadFun2, 5); t1.join(); getchar(); } ``` 通过使用`std::thread`类,可以更轻松地实现多线程编程,并解决跨平台的问题。这不仅提高了代码的可移植性也增强了其维护能力。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • C++11使std::thread线
    优质
    本书专注于讲解C++11中的并发编程技术,重点介绍如何利用`std::thread`进行多线程开发。适合希望提升程序性能和响应性的C++程序员阅读。 C++11并发编程:多线程std::thread C++11引入了`thread`类,大大降低了使用多线程的复杂性。在此之前,实现跨平台的多线程程序需要依赖于系统API,并且代码移植时常常面临修改的问题。而在C++11中,通过语言层面提供的`std::thread`可以解决这些难题。 一、概述 在C++11中引入了`std::thread`类,为开发人员提供了便捷的多线程编程工具。该类包含多种构造函数、成员函数和静态方法以适应不同的应用场景需求。 二、构造函数 1. 默认构造函数 ```cpp thread() noexcept; ``` 创建一个空的`std::thread`对象。 2. 初始化构造函数 ```cpp template explicit thread(Fn&& fn, Args&&... args); ``` 创建并初始化一个新的线程,该线程将执行由给定参数指定的功能。 3. 拷贝构造函数(被禁用) ```cpp thread(const thread&) = delete; ``` 4. 移动构造函数 ```cpp thread(thread&& x) noexcept; ``` 调用成功后原来的`x`就不再是有效的线程对象了。 三、成员方法 1. `get_id()` 返回当前线程的唯一标识符,类型为`std::thread::id`。 2. `join()` 等待指定的线程执行完毕。如果该函数被调用,则会阻塞直到目标线程完成运行为止。 3. `detach()` 使一个已连接到当前对象的线程成为独立的守护进程,并且不再由这个特定的对象控制它。 4. `swap()` 交换两个`std::thread`实例的内容。 5. `hardware_concurrency()` 返回逻辑处理器的数量,通常用于指导多线程程序中的并发程度。 四、示例使用 1. 创建并启动一个新线程 ```cpp void threadFun1(){ cout << this is thread fun1 ! << endl; } int main(){ std::thread t1(threadFun1); t1.join(); getchar(); return 0; } ``` 2. 向线程传递参数并启动它 ```cpp void threadFun2(int v){ cout << this is thread fun2 ! << endl; cout << v << endl; } int main(){ std::thread t1(threadFun2, 5); t1.join(); getchar(); } ``` 通过使用`std::thread`类,可以更轻松地实现多线程编程,并解决跨平台的问题。这不仅提高了代码的可移植性也增强了其维护能力。
  • C++11使std::thread进行线
    优质
    本文章介绍了如何在C++11中利用库实现多线程编程,帮助读者掌握现代C++中的并发编程技术。 一:概述 C++11引入了thread类,大大简化了多线程的使用难度。在此之前,若想使用多线程只能依赖于系统的API,并且无法解决跨平台的问题;一套代码在不同平台上移植时,对应的多线程代码也必须进行修改。而在C++11中,则只需通过语言层面的thread即可轻松应对这一问题。 所需头文件:`` 二:构造函数 1. 默认构造函数 ```cpp thread() noexcept ``` 创建一个空的std::thread执行对象。 2. 初始化构造函数 ```cpp template explicit thread(Fn&& fn, Args&&… args); ``` 此构造函数用于创建std::thread执行对象,线程调用thre。
  • C++线教学视频(C++11)【122212】线API解析(一).rar
    优质
    本教程为C++11并发技术系列之一,专注于讲解C++多线程编程的API使用方法。通过实例分析帮助初学者掌握C++11标准下的多线程开发技巧与实践应用。 《C++面向对象多线程编程》是一本非常优秀且全面的关于多线程方面的书籍。如果你认为自己是一位真正的程序员而非仅仅是组件装配员,那么了解多线程知识是必不可少的。无论是谁,只要不是刚入门的C++程序员都可以从这本书中获益良多;不仅书中的核心内容值得深入学习,其中提供的高质量源代码也颇具参考价值。
  • C++11线入门(一)
    优质
    本教程为C++11多线程并发编程初学者提供基础知识和实践技巧,涵盖线程管理、同步机制等核心内容。适合希望提升程序性能的开发者学习。 C++11的多线程并发编程(一) 在疫情期间以及对未来工作的展望中,我给自己定了一个学习目标:通过记录并掌握C++11中的多线程并发编程知识。作为初学者,我的理解可能不够深入,请大家多多指正。 学习多线程并发编程时首先要了解一些基本概念,包括可执行程序、进程和线程等,并熟悉C++11的相关特性。 ### 了解基础概念 **可执行程序** 在Windows系统中,当你双击一个以.exe为后缀的文件时,后台运行的就是这个可执行程序。而在Linux环境下(我使用的是Ubuntu),通过终端命令`ls -la`查看具有x权限的文件可以判断是否是可执行程序。 **进程** 可执行程序与进程之间有着密切的关系。
  • C++11线std::async简介及示例
    优质
    本文介绍了C++11中用于简化异步编程的新特性std::async,包括其工作原理和使用方法,并通过实例展示了如何在多线程环境中利用它来提高程序的并发性能。 本节讨论在C++11中如何使用std::async来执行异步任务。C++11引入了std::async,它是一个函数模板,接受回调(函数或函数对象)作为参数,并可能异步执行它们。其声明如下: templatefuture::type> std::async(launch policy, Fn&& fn, Args&&...args); std::async返回一个 std::future 对象,该对象存储由 std::async() 执行的函数的结果。
  • C++11线
    优质
    《C++11的多线程编程》一书深入浅出地介绍了如何使用C++11标准进行高效的并行程序设计与开发,涵盖线程管理、互斥锁、原子操作及条件变量等内容。 本课程的重点在于讲解C++11新标准中的多线程开发部分,并且讲师会结合自身经验将多线程的讨论扩展到更广泛的领域。无论是C++11中的多线程编程还是其他形式的多线程实现,它们之间有很多相似之处或共同遵循的原则、技巧和规则。
  • Python中线
    优质
    本课程深入浅出地讲解了Python编程语言中实现并发处理的方法和技巧,重点介绍多线程和多进程的应用场景及其优势。通过实例解析如何提高程序性能和效率,适合希望提升代码执行速度的开发者学习。 压缩包内包含四个文件:实现的效果都是通过多线程或多进程执行加法运算;multiprocess_queue使用任务队列方式实现多进程任务(使用multiprocessing模块);multithread_queue使用任务队列方式实现多线程任务(使用threading模块);multiprocess_pool利用进程池方式实现多进程任务(使用concurrent.futures模块);multithread_pool则通过线程池方式实现多线程任务(同样使用concurrent.futures模块)。
  • C++11线资料.zip
    优质
    本资料合集提供了关于C++11标准中多线程编程的相关资源与示例代码,涵盖线程创建、同步机制及并发编程技巧等内容。 C++11多线程编程实例:涵盖future其他成员函数、shared_future、atomic的使用;std::async深入讲解;Windows临界区及其他各种mutex互斥量的应用;补充知识包括线程池浅谈及相关总结。
  • TBB线
    优质
    TBB(Threading Building Blocks)是Intel开发的一款高级并行算法库,用于简化C++程序中的并发编程。本课程深入讲解如何使用TBB实现高效的多线程应用程序。 这是一个PPT讲座,主要介绍如何使用Intel的Thread Building Block进行多线程编程。
  • C++ 11std::function和std::bind使详解
    优质
    本文详细介绍了C++ 11标准中的std::function与std::bind库函数的用法及其实现原理,帮助读者深入理解并掌握这两项强大的功能。 本段落详细介绍了C++ 11中的std::function和std::bind的使用方法,并通过示例代码进行了讲解。内容对学习者或工作者具有参考价值,需要了解相关内容的朋友可以继续阅读以获得更多信息。