Advertisement

基于Lyapunov稳定性的欠驱动船舶航向自适应迭代滑模控制

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种基于Lyapunov稳定性理论的欠驱动船舶航向控制策略,采用自适应迭代滑模控制技术,有效提升船舶在复杂海况下的航行性能和操控精度。 本段落提供的资源包括相关研究文献及对应的MATLAB仿真程序供参考使用。论文提出了一种二阶迭代滑模面的设计方法,将航向偏差的稳定问题转化为对滑模面的控制,并基于Lyapunov理论推导了系统渐近稳定的条件,从而得到相应的航向控制律。由于该控制律中包含未知外界干扰和系统不确定因素的影响,文中设计了两种不同的控制策略来应对这些问题。 第一种方法是通过不考虑这些不确定因素的情况下初步构建一个简单的控制规则,并进一步推导出等效的迭代滑模控制器。这种方案的优点在于其参数较少且算法处理相对简便。 第二种方法则引入径向基函数(RBF)神经网络技术,用于逼近系统中的不确定性部分;同时采用自适应控制策略来估计未知外界干扰的影响范围。该方法可以有效应对模型不确定性和海况扰动等因素对控制系统性能的负面影响。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Lyapunov
    优质
    本研究提出了一种基于Lyapunov稳定性理论的欠驱动船舶航向控制策略,采用自适应迭代滑模控制技术,有效提升船舶在复杂海况下的航行性能和操控精度。 本段落提供的资源包括相关研究文献及对应的MATLAB仿真程序供参考使用。论文提出了一种二阶迭代滑模面的设计方法,将航向偏差的稳定问题转化为对滑模面的控制,并基于Lyapunov理论推导了系统渐近稳定的条件,从而得到相应的航向控制律。由于该控制律中包含未知外界干扰和系统不确定因素的影响,文中设计了两种不同的控制策略来应对这些问题。 第一种方法是通过不考虑这些不确定因素的情况下初步构建一个简单的控制规则,并进一步推导出等效的迭代滑模控制器。这种方案的优点在于其参数较少且算法处理相对简便。 第二种方法则引入径向基函数(RBF)神经网络技术,用于逼近系统中的不确定性部分;同时采用自适应控制策略来估计未知外界干扰的影响范围。该方法可以有效应对模型不确定性和海况扰动等因素对控制系统性能的负面影响。
  • Lyapunov理论路径跟踪
    优质
    本研究提出了一种结合Lyapunov稳定性理论与自适应迭代滑模技术的创新方法,专门针对欠驱动船舶进行路径跟踪控制。该方案有效解决了此类船只在动态环境中的机动性问题,实现了更加精准和稳定的航行轨迹调整,为海洋运输及海上作业提供了可靠的技术支持。 本段落提供了相关文献及MATLAB仿真程序供参考,并设计了一种欠驱动船舶的神经网络自适应迭代滑模航向控制器,在部分模型不确定性和外界海况未知的情况下实现了航向控制目标。接下来,基于这些条件,本章将解决欠驱动船舶路径跟踪的问题。由于受风浪流等海洋环境干扰后会产生横向漂移,船首需要以一定角度与计划航线保持一致;否则在缺少有效控制措施时,经扰动后的欠驱动船舶的路径跟踪结果会出现稳态误差。 为此,结合Lyapunov稳定性条件的思想,并采用Adaline单神经元和最小二乘法提出了一种新的自适应迭代滑模控制器。通过MATLAB仿真验证了该控制器的有效性。
  • 混沌萤火虫算法轨迹跟踪
    优质
    本研究提出了一种结合混沌萤火虫算法的欠驱动船舶自适应迭代滑模控制器,有效提升了船舶在复杂海况下的轨迹追踪精度和鲁棒性。 本段落针对欠驱动船舶的路径跟踪控制问题,在面对模型参数不确定性和未知海洋环境扰动的情况下,提出了一种神经元自适应迭代滑模控制策略。相比传统的路径跟踪控制方法,轨迹跟踪控制需要利用舵力矩与螺旋桨推进力使笛卡尔坐标系中的横向和纵向位置误差收敛到零,并且期望轨迹是一个时间函数的表达形式,因此其问题解决起来更为复杂。 本研究通过参考欠驱动船舶在轨迹追踪过程中的横向及纵向误差信息来构建二阶滑模面和四阶滑模面。结合Lyapunov稳定性条件的设计理念,我们设计了螺旋桨转速控制器以及舵机角度控制器。为了进一步优化控制参数的设定,本段落还引入了萤火虫算法与混沌算法相结合的方法来进行寻优处理,并最终提出了一种基于混沌萤火虫算法的欠驱动船舶轨迹跟踪自适应迭代滑模控制器方案。
  • 带有扰补偿轨迹跟踪
    优质
    本研究提出了一种基于扰动补偿和自适应滑模控制策略,用于改善欠驱动船舶在复杂海况下的精确轨迹跟踪性能。通过理论分析与仿真验证,展示了该方法的有效性和鲁棒性。 近年来,随着欠驱动系统控制技术的快速发展以及船舶智能化要求的不断提高,对欠驱动船舶控制问题的研究越来越受到关注。本课题结合backstepping设计方法、滑模控制算法、参数自适应方法、动态面控制技术和神经网络等先进理论,探讨了在外界环境干扰、模型不确定性和速度不可测情况下的欠驱动船舶轨迹跟踪状态反馈与输出反馈自适应滑模控制策略。 首先,假设已知船舶模型,在考虑干扰界值是否明确的情况下研究其轨迹追踪问题。对于外界环境干扰界值已知的情况,通过结合backstepping设计方法和滑模控制算法来制定出一套船舶轨迹追踪的滑模控制器;进一步地,当外界环境干扰界的确定性未知时,则引入带有σ-修正参数自适应律以估算该界限,并利用双曲正切函数解决由符号函数带来的“抖振”问题。 其次,在面临模型不确定性及未知外部扰动的情况下,通过结合动态面控制技术、自适应神经网络、滑模控制算法和backstepping设计方法来制定一种基于神经网络的船舶轨迹追踪自适应滑模控制器。此研究不仅提供了相关文献资料的支持,并且也包含了可以直接运行的matlab程序供参考使用。
  • trackkeeping.rar___MATLAB迹轨迹跟踪
    优质
    本资源为一款针对欠驱动船舶设计的航迹控制系统,采用MATLAB进行开发与仿真。系统旨在实现复杂海况下的精确路径追踪,适用于学术研究和工程应用。 船舶航迹控制属于典型的欠驱动控制问题,在这一领域内,“轨迹跟踪”是一个关键的研究方向。
  • 神经网络与态面轨迹跟踪
    优质
    本研究提出了一种结合神经网络和动态表面技术的自适应滑模控制器,有效解决了欠驱动船舶在复杂海况下的精确轨迹跟踪问题。 本段落研究了在已知船舶模型前提下不同干扰条件下的轨迹跟踪问题。首先,在外界环境干扰界已知的情况下,结合backstepping设计方法与滑模控制算法,提出了船舶轨迹跟踪的滑模控制律。 其次,针对存在不确定性和未知外部扰动的情况,采用动态面技术、自适应神经网络和滑模控制等手段相结合的方法来实现船舶轨迹追踪。为解决由此带来的“维数灾难”问题以及对虚拟控制器微分操作造成的复杂性增加的问题,提出了一种结合最小参数学习法与动态面控制的欠驱动船舶轨迹跟踪自适应滑模控制律。 最后,在实际应用中,由于难以直接测量船速的情况,设计了非线性观测器来估计船速,并在此基础上利用动态面技术避免对虚拟控制器进行微分操作。从而提出了一种基于非线性观测器和动态面的欠驱动船舶轨迹跟踪自适应滑模输出反馈控制律。 文中提供的资源包括相关文献及MATLAB仿真程序,仅供参考使用。
  • FMRLC_Tanker.zip_MATLAB__MATLAB___
    优质
    本资源包提供了一个基于MATLAB的船舶控制系统模型,专注于优化船舶在航行过程中的航向控制。通过模拟各种海上条件下的操作,它为研究人员和工程师提供了评估和改进船舶稳定性和操纵性的平台。 船舶航向控制的一个实用程序可以进行仿真运行。
  • Backstepping鲁棒非线设计
    优质
    本研究提出了一种基于Backstepping方法的船舶航向控制系统设计方案,采用自适应和鲁棒控制策略,有效处理了船舶航行过程中的非线性问题。 标题“基于backstepping的船舶航向自适应鲁棒非线性控制器设计”涉及的是自动控制理论在航海领域的应用,特别是针对船舶航向的一种高级策略。Backstepping(反步法)是一种用于解决复杂非线性系统问题的技术,在船用导航中可以有效处理因海洋环境和船只动态特性导致的不确定性和非线性因素。 通过构造一系列虚拟控制量及逆设计过程,backstepping方法能够将原非线性控制系统分解为多个稳定的子系统。这种方法在船舶航向控制中的应用确保了精确跟踪设定路径的能力。自适应控制器则是解决参数不确定性的重要手段,在实际操作中,由于载荷变化或海流影响等因素的影响,船模的参数会有所改变。通过在线调整控制器参数来应对这些变化,可以保证系统的稳定性和性能。 “自适应鲁棒非线性控制器”结合了自适应和鲁棒控制策略,旨在确保在面对模型不确定性和外界干扰时仍能保持系统性能。这对于海洋环境尤其重要,在这种环境中扰动难以预测且建模复杂。“adaptive_course_model_disturbance.m”与“adaptive_course_backstepping_disturbance.m”可能是MATLAB代码文件,用于构建船舶航向模型并实施基于backstepping的自适应鲁棒控制器。 这些代码可能包含系统数学模型、控制器设计及仿真过程。通过运行和分析这些代码,可以更好地理解控制器的工作原理及其性能表现。综上所述,该研究项目旨在利用反步法结合自适应鲁棒控制策略来应对船舶航向控制系统中的非线性问题以及外界扰动,提高航行安全性和导航精度,在复杂海洋环境中尤为重要。 此项目的深入研究表明了这种先进控制技术的实现细节和优势,并为未来相关领域的探索提供了有价值的参考。
  • MPC型预测.zip
    优质
    本研究探讨了欠驱动船舶在复杂海况下的运动控制问题,提出了一种基于MPC(Model Predictive Control)的控制策略,以优化航行路径和提高操纵性能。 本资源包含三个函数:Main.m为主函数,用于设定给定轨迹、MPC参数以及初始状态;fun_trajforship.m为轨迹计算函数,根据Main.m中设定的轨迹及采样周期,计算每个采样周期对应的轨迹数值;nmpc_m.m为模型预测控制器函数。图片展示了欠驱动船舶的动力学模型(在Main.m函数中用system描述)。
  • 程序_MATLAB_;_PID__
    优质
    本项目利用MATLAB平台开发了模拟船舶运动的程序,并实现了基于PID算法的船舶航向控制系统,以优化船舶航行稳定性与精度。 MATLAB基于PID的船舶航向控制程序涉及使用MATLAB编写一个自动控制系统,该系统利用比例-积分-微分(PID)算法来调整船舶的方向以保持预定的航行路线。这样的程序能够帮助提高船舶导航的精确性和稳定性,减少人为操作误差和提升安全性。