Advertisement

针对12C5A60S2舵机的驱动程序,进行了数字舵机通用的模拟。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
利用12C5A60S2舵机驱动程序,开发了一种通用的数字舵机解决方案,只需更改一个IO口即可实现其功能。该程序能够精确控制pwm频率至20毫秒,并且由于其卓越的性能,特意将其分享给广大爱好者。更多详细信息请查阅博客:https://blog..net/pang9998/article/details/103200666

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于12C5A60S2
    优质
    本简介介绍了一种适用于12C5A60S2微控制器的通用模拟与数字舵机驱动程序设计,支持高效控制多种类型的伺服电机。 基于12C5A60S2的舵机驱动程序适用于模拟数字舵机,并且只需更改IO口即可使用。PWM频率精准设定为20ms。此驱动程序非常实用,现特与大家分享。详情请参阅相关博客文章。
  • STM32F1
    优质
    本工程为基于STM32F1微控制器的数字舵机通用驱动程序设计,提供便捷接口控制多种型号数字舵机,适用于机器人、无人机等项目。 基于STM32F10x系列芯片的SG90舵机驱动程序工程经过优化后可以方便地移植到其他采用C语言的微控制器上,并通过宏定义快速适应各种型号舵机的驱动需求。
  • STM32
    优质
    本段代码提供了基于STM32微控制器驱动直流伺服电机(舵机)的具体实现方法和编程技巧,适用于嵌入式系统开发人员。 STM32是一款基于ARM Cortex-M内核的微控制器,在嵌入式系统设计领域应用广泛,特别是在机器人、无人机及物联网等行业。本项目旨在介绍如何使用STM32通过PWM信号来控制舵机,并实现精确的角度调节。 舵机是一种常见的伺服马达,通常用于机械结构的位置定位。其内部包含一个位置反馈机制,能够根据接收到的PWM信号调整自身的角度。一般而言,PWM信号周期为20毫秒,在此期间高电平的时间(即占空比)决定了舵机转动的角度:例如当占空比是1ms时对应约0°;而当占空比达到1.5ms则对应90°;若进一步增加到2ms,则会转至大约180°。因此,通过改变PWM信号的占空比,便能够控制舵机转动到不同的角度。 在STM32中实现上述功能需要完成以下步骤: - 配置定时器:选择合适的定时器(如TIM1, TIM2等),并将工作模式设置为PWM模式;这通常涉及配置预分频值、自动加载寄存器(ARR)的数值,计数方式以及比较通道。 - 初始化GPIO端口:将选定的输出引脚连接到对应的GPIO端,并将其设定为推挽输出以驱动舵机信号线。 - 设置PWM参数:在定时器中设置所需的预设和对比值来决定PWM周期及占空比。对于控制舵机而言,通常需要确保PWM周期为20ms并通过修改比较值调整占空比。 - 启动定时器:开启配置好的定时器后即可开始输出PWM信号;通过改变定时器的比较值便可以实时调节PWM的占空比进而更改舵机的角度。 在项目文件中可能会包含实现上述功能所需的相关C语言代码。这些代码通常会使用STM32 HAL库中的函数,例如`HAL_TIM_PWM_Init()`、`HAL_TIM_PWM_ConfigChannel()`和`HAL_TIM_PWM_Start()`来初始化并启动定时器;同时也会有用于根据需求动态调整PWM占空比的相应函数或循环结构如`setServoAngle()`. 遵循一定的命名规范与良好的注释习惯,使得代码易于移植及维护。此项目为初学者提供了一个实用案例以学习如何使用STM32进行嵌入式系统开发和机器人控制的基础知识,并掌握通过微控制器实现机械运动的基本技能。
  • F4控制.zip_F4单片控制_STM32F4 _stm32F4_stm32F4代码_stm32F4
    优质
    本资源为STM32F4单片机控制舵机的程序包,包括详细的舵机控制代码和相关说明文档。适用于学习与实践舵机编程及驱动技术。 利用STM32F407单片机控制舵机精确转动的实验效果良好,系统运行正常且可用。
  • 自制
    优质
    本项目专注于开发一套适用于各类舵机的自定义驱动程序,旨在简化硬件控制流程,并提高编程灵活性和响应速度。 电路板使用了3个元件:一个STC15W408AS DIP16单片机、L9110 DIP8电机驱动器以及用于测量舵机内部电位器位置的10位精度ADC。L9110的最大电流为0.8A,对于4g舵机的小空心杯电机来说已经足够,并且其电路设计也非常简单。
  • 5529控制.zip_5529_msp430_msp430f5529_
    优质
    本项目为基于TI公司msp430F5529单片机的舵机控制系统,旨在实现对直流伺服电机精准控制。通过PWM信号调节舵机旋转角度,适用于机器人、无人机等自动化设备。 使用msp430f5529通过输出PWM波来控制舵机。
  • STM32F103 示例
    优质
    本示例程序展示了如何使用STM32F103微控制器进行舵机控制,通过PWM信号实现舵机角度调节,适用于机器人和无人机等项目。 STM32F103 驱动舵机例程通过一个IO口输出舵机控制信号对电机进行简单控制。
  • PCA8591 16路.zip
    优质
    该资源包提供了PCA8591芯片控制16路舵机的详细驱动程序代码,适用于需要多通道伺服电机控制的应用场景。 PCA8591是一款拥有16通道的模拟输入输出接口芯片,广泛应用于舵机控制、电机驱动等领域。在本项目中,它用于驱动16个舵机,并通过与STM32F407VET6微控制器通信实现对这些舵机的精确操控。 PCA8591的功能包括集成有16个独立的12位模数转换器(ADC)和数字到模拟转换器(DAC),可以接收并输出模拟信号。在控制舵机时,通过调整PCA8591的电压输出来改变舵机的角度,这些变化与角度成正比关系。每个通道都可以单独配置,支持同时控制多个舵机,并实现复杂的运动调节。 STM32F407VET6是一款高性能且低功耗的微控制器,具备强大的ARM Cortex-M4内核及多种外设接口。它拥有高达128KB闪存和1MB SRAM,能够快速响应舵机控制需求;内部集成浮点单元(FPU),适合进行PID等数学运算。 驱动程序设计的关键在于PCA8591与STM32之间的通信协议,通常采用I2C总线协议。通过两条线路(SDA和SCL)实现双向通讯,减少引脚资源占用。编写代码时需完成发送指令设置PCA8591输出电压以及读取舵机状态等操作。 具体步骤包括: - 初始化I2C接口:配置STM32的GPIO为I2C模式,并初始化相关寄存器。 - 设置PCA8591地址:根据电路设计选择合适的芯片地址。 - 编写读写函数:发送命令以设置目标角度(通过DAC输出)及读取模拟输入值(用于闭环控制时)。 - PID控制器应用:计算并调整PWM脉宽,确保舵机运动平滑精确。 - PWM信号生成:利用STM32的TIM模块配置参数将PID结果转换为适合舵机接收的PWM宽度。 压缩包内可能包含驱动程序源代码文件(如`.c`和`.h`),这些文档详细描述了如何与PCA8591进行交互以及在STM32平台上实现对多个舵机的操作控制。此外,还可能包括Makefile等编译配置工具帮助用户完成项目开发。 此案例展示了利用PCA8591芯片及STM32F407VET6微控制器构建高效多通道舵机控制系统的方法,涉及硬件接口、通信协议以及控制算法等多个方面知识,对学习嵌入式系统和电机控制的工程师具有重要参考价值。
  • 51单片16路PWM
    优质
    本驱动程序专为基于51单片机的16路PWM舵机模块设计,支持多个舵机同步或异步控制。适合机器人、无人机等项目应用。 以下是淘宝上售卖的16路PWM舵机驱动模块用51单片机编写的部分程序代码: ```c #include #include #include #include typedef unsigned char uchar; typedef unsigned int uint; sbit scl = P1^3; // 时钟输入线 sbit sda = P1^4; // 数据输入/输出端 sbit KEY1 = P2^0; sbit KEY2 = P2^1; #define PCA9685_adrr 0x80 // 片选地址,将焊接点置1可改变地址 // 定义PCA9685寄存器和常量 #define PCA9685_MODE1 0x0 #define PCA9685_PRESCALE 0xFE #define LED0_ON_L 0x6 #define LED0_OFF_L 0x8 #define SERVOMIN 115 // 舵机最小脉冲长度计数值(4096分之一) #define SERVOMAX 590 // 舵机最大脉冲长度计数值(4096分之一) // 定义舵机角度对应的脉宽值 #define SERVO000 130 // 对应于舵机的0度位置,根据具体型号调整此参数 #define SERVO180 520 // 对应于舵机的180度位置,同样需要按实际情况进行修改 // 函数声明部分 void delayms(uint z); void delayus(); void init(void); void start(void); void stop(void); void ACK(void); void write_byte(uchar byte); uchar read_byte(); void PCA9685_write(uchar address, uchar date); uchar PCA9685_read(uchar address); // 毫秒级延时函数 void delayms(uint z) { uint x,y; for(x = z; x > 0 ;x--) for(y=148;y>0;y--); } // 微妙级别延时函数(大于4.7us) void delayus() { _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); } // IIC总线初始化 void init(void) { sda = 1; // 初始化数据端口为高电平 scl = 1; delayus(); } // 发送IIC启动信号函数 void start() { sda=1; delayus(); scl=1; delayus(); sda=0; delayus(); scl=0; delayus(); } // IIC总线停止信号发送函数 void stop() { sda = 0; delayus(); scl = 1; delayus(); sda = 1; } // 发送ACK应答信号 void ACK(void) { uchar i; scl=1; delayus(); while((sda==1)&&(i<255)) i++; scl=0; delayus(); } // 写入一个字节的函数,无返回值 void write_byte(uchar byte) { uchar i,temp; temp = byte; for(i = 0 ;i <8;i++) { temp <<=1; scl=0; delayus(); sda=CY; delayus(); scl=1; } scl=0; delayus(); sda=1; } // 从PCA9685读取数据的函数,有返回值 uchar read_byte() { uchar date; start(); write_byte(PCA9685_adrr); ACK(); start(); write_byte((PCA9685_adrr|0x01)); ACK(); date = read_byte(); stop(); return(date); } // 向PCA9685写入数据 void PCA9685_write(uchar address, uchar data) { start(); write_byte(PCA9685_adrr); ACK(); write_byte(address); ACK(); write_byte(data); stop(); } // 向PCA9685读取数据 uchar PCA9685_read(uchar address) { uchar data; start(); write_byte(PCA9685_adrr); ACK(); start(); write_byte(address); ACK(); start(); write
  • STM32F407 控制_控制_STM32F407_steering
    优质
    本项目介绍如何使用STM32F407微控制器进行精确的舵机控制,通过编写特定程序实现对舵机位置、速度等参数的有效调节。 STM32F407可以用来控制舵机的角度范围在0到180度之间。通过按键改变PWM占空比来调整舵机的转动角度,也可以手动设定转动的具体角度。