
基于施密特正交化的QR分解求逆矩阵及MATLAB仿真
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本研究提出了一种利用施密特正交化方法进行QR分解,并进一步计算逆矩阵的技术。通过MATLAB进行了详细的算法实现与性能验证,展示了该方法的有效性和实用性。
严格按照施密特正交化分解步骤进行计算求得正交矩阵Q和上三角矩阵R,并且在整个过程中没有调用MATLAB提供的QR分解函数。完成分解之后,在MATLAB中通过求逆仿真绘制了三个曲线图,以便于可视化观察结果。在线性代数领域,QR 分解是指将一个矩阵分解为一个正交矩阵(Q)与一个上三角矩阵(R)的乘积的过程。由于 Q 是正交矩阵,其逆矩阵等于它的共轭转置。求得 R 的逆后即可得到原待求矩阵的逆。
全部评论 (0)
还没有任何评论哟~


