本资源为BFGS优化方法的MATLAB实现代码,适用于二次优化问题,基于拟牛顿法原理,提供高效求解非线性最优化问题的解决方案。
拟牛顿法是一种在数值优化领域广泛使用的迭代方法,主要用于寻找无约束或有约束条件下的局部极小值问题的解。BFGS(Broyden-Fletcher-Goldfarb-Shanno)是拟牛顿法的一个具体实现方式,它以四位数学家的名字命名,在20世纪60年代由他们各自独立提出。由于其既高效又相对简单的特性,BFGS在实际应用中非常受欢迎,并且特别适用于解决大型优化问题。
BFGS的核心思想在于通过近似Hessian矩阵(目标函数的二阶导数矩阵)来模拟牛顿法的迭代过程。然而,直接计算和存储完整的Hessian矩阵对于高维问题来说可能会造成巨大的负担。因此,BFGS采用一系列正定且递推更新公式的方法,避免了直接计算整个Hessian矩阵,并大大降低了所需的计算资源。
具体而言,BFGS算法的主要步骤包括:
1. **初始近似Hessian**: 通常选择单位矩阵作为初始的Hessian近似。
2. **梯度方向**: 计算当前点处目标函数的负梯度向量,以此为搜索方向。
3. **线性搜索**: 使用适当的线性搜索算法(例如Armijo规则或Goldstein准则)找到一个合适的步长α,使得沿着该方向移动时目标函数下降最为显著且满足一定的条件。
4. **Hessian更新**: 利用前两次迭代的信息来更新近似的Hessian矩阵。BFGS的这种更新方式保证了每次得到的新矩阵都是正定的,并因此确保算法具有良好的稳定性。
5. **重复执行**: 更新当前点的位置并继续上述步骤,直至满足预设的停止条件(如达到最大允许次数、梯度足够小或目标函数值不再明显改变等)。
在MATLAB中,`fminunc`函数提供了一种内置的方法来实现BFGS优化算法。用户只需定义待求解的目标函数和可能存在的约束条件,然后该软件将自动执行相应的计算任务以寻找最优解。
另一个关键特性是二次收敛性:随着迭代次数的增加,BFGS方法能够越来越快地逼近全局最小值,并最终达到一个二次速率的增长趋势。这是因为更新后的Hessian近似会逐渐接近真实的Hessian矩阵;而对二阶可微函数而言,其极小点正是该函数在某一点处的Hessian矩阵为零的情况。
实际应用中,BFGS法常与有限差分或自动求导技术结合使用来获取目标函数的梯度信息。此外,为了处理大型稀疏问题,还发展出了基于稀疏近似的方法,例如有限内存版本的BFGS(L-BFGS),它只需存储和操作最近几次迭代的信息即可大幅减少内存需求。
综上所述,BFGS方法在数值优化领域中是一个非常有效的工具,特别适用于解决高维复杂问题。通过迭代更新Hessian矩阵近似值的方式,该算法既保持了牛顿法的快速收敛特性又避免了直接计算完整Hessian矩阵所带来的高昂成本。MATLAB提供的实现使得这种方法能够广泛应用于各种工程和科学研究场景之中。