Advertisement

基于光伏并网的逆变器LVRT控制系统的电网故障仿真设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:DOC


简介:
本研究探讨了基于光伏并网发电系统中的逆变器低电压穿越(LVRT)控制系统设计,并进行了电网故障情况下的仿真分析,以提升电力系统的稳定性和可靠性。 光伏逆变器是光伏并网系统中的核心组件之一,其控制系统的设计对整个系统的性能有重要影响。随着光伏发电的快速发展,我们对于电网稳定性的要求也越来越高。低电压穿越技术是一种在电网故障发生时确保电力系统稳定的控制方法,并且许多大型光伏电站都需要具备这种能力。 本毕业设计研究了在电网故障情况下光伏逆变器的LVRT(Low Voltage Ride Through)技术,完成了以下工作:首先,介绍了国内外关于LVRT技术的发展现状、并网逆变器和光伏并网系统的相关知识。接着分析了当电网发生故障时,光伏并网逆变器的工作特性。 在研究过程中还学习了两种电压跌落检测方法——基于dq-PLL的检测方法以及基于SOGI(Second Order Generalized Integrator)的方法,并通过Simulink仿真对这两种方法进行了比较和讨论。此外,本设计还探讨了一种低电压控制策略:当电网发生故障时,逆变器输出电流不会因电压跌落而脱离电网的关键在于无功功率的支持。 光伏并网逆变器的有功及无功电流会根据电压跌幅的变化进行调整,在这种情况下通过提供适当的无功支持使电网中的电流保持在正常范围内,从而实现LVRT控制。最后本设计还利用Simulink仿真验证了所提出的LVRT控制策略的有效性和可行性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LVRT仿
    优质
    本研究探讨了基于光伏并网发电系统中的逆变器低电压穿越(LVRT)控制系统设计,并进行了电网故障情况下的仿真分析,以提升电力系统的稳定性和可靠性。 光伏逆变器是光伏并网系统中的核心组件之一,其控制系统的设计对整个系统的性能有重要影响。随着光伏发电的快速发展,我们对于电网稳定性的要求也越来越高。低电压穿越技术是一种在电网故障发生时确保电力系统稳定的控制方法,并且许多大型光伏电站都需要具备这种能力。 本毕业设计研究了在电网故障情况下光伏逆变器的LVRT(Low Voltage Ride Through)技术,完成了以下工作:首先,介绍了国内外关于LVRT技术的发展现状、并网逆变器和光伏并网系统的相关知识。接着分析了当电网发生故障时,光伏并网逆变器的工作特性。 在研究过程中还学习了两种电压跌落检测方法——基于dq-PLL的检测方法以及基于SOGI(Second Order Generalized Integrator)的方法,并通过Simulink仿真对这两种方法进行了比较和讨论。此外,本设计还探讨了一种低电压控制策略:当电网发生故障时,逆变器输出电流不会因电压跌落而脱离电网的关键在于无功功率的支持。 光伏并网逆变器的有功及无功电流会根据电压跌幅的变化进行调整,在这种情况下通过提供适当的无功支持使电网中的电流保持在正常范围内,从而实现LVRT控制。最后本设计还利用Simulink仿真验证了所提出的LVRT控制策略的有效性和可行性。
  • 仿
    优质
    《光伏并网逆变器的控制与仿真》一书深入探讨了光伏系统中逆变器的关键技术,包括其工作原理、控制策略及仿真方法,为研究人员和工程师提供了理论指导和技术支持。 光伏系统通过PLL控制并入电网的仿真模型详细展示了其控制结构。锁相环用于调节并网逆变器的d轴和q轴电流,从而实现对有功无功功率的精确调控。仿真的结果表明系统的稳定性良好,并且通过FFT分析可以观察到由直流电压环引发的低频振荡现象。
  • Simulink仿
    优质
    本项目利用Simulink平台对光伏并网逆变器进行建模与仿真,旨在优化其控制策略和性能参数,促进可再生能源的有效利用。 Simulink光伏并网逆变器仿真基于一篇论文进行,并且可以运行。
  • Simulink混合仿模型:协同
    优质
    本研究构建了基于Simulink平台的光伏和风力发电混合并网系统的仿真模型,重点探讨了不同可再生能源间的协同控制系统优化与高效并网逆变器的设计方法。通过详尽的仿真分析,为提高系统稳定性和能效提供了新的技术路径。 光伏风电混合并网系统基于Simulink仿真模型进行设计与分析。该系统包括光伏发电系统、风力发电系统、负载以及逆变器LCL大电网四个主要部分。 在光伏发电方面,采用扰动观察法实现最大功率点跟踪(MPPT)控制,并通过Boost电路将电力并入母线;而在风力发电中,则利用最佳叶尖速比方法实施MPPT控制,经过三相电压型PWM变换器整流后接入母线。逆变器VSR则采用基于电网电压定向矢量的双闭环控制系统,最终经由LCL滤波器将电力并入大电网。 此系统的核心关键词包括:光伏风电混合并网系统;Simulink仿真模型;光伏发电系统;风力发电系统;负载;逆变器LCL大电网;MPPT控制;扰动观察法;Boost电路;最佳叶尖速比。
  • Simulink避雷仿研究及实现,避雷Simulink仿,核心关键词:...
    优质
    本研究采用Simulink平台对光伏并网逆变器控制器避雷器进行仿真分析与设计实现,深入探讨了其在不同工况下的性能表现及优化策略。 在可再生能源技术迅速发展的背景下,光伏发电系统已经成为研究热点之一。光伏并网逆变器是这一系统的核心部分,它负责将太阳能转换为电能,并将其接入电网中以满足电力需求。由于这些设备通常暴露于户外环境中,它们容易受到雷击等自然现象的影响,因此避雷器成为了保护组件免受损害的关键装置。 为了深入研究和实现光伏并网逆变器控制器与避雷器的协同工作策略,研究人员采用了Simulink仿真平台进行实验。Simulink是MATLAB环境中的一个集成软件包,它允许用户通过可视化的模型搭建来创建复杂的仿真场景,并能够模拟各种条件下的系统行为。 在开展光伏并网逆变器控制器避雷器保护机制的研究过程中,以下几个方面显得尤为重要: 1. 光伏并网逆变器的基本原理与构造:此设备负责将太阳能电池板产生的直流电转化为交流电,并确保其频率和相位与公共电网保持一致。为了适应不断变化的电网条件,这种逆变器需要具备灵活且稳定的性能。 2. 控制器的功能及其重要性:控制器是光伏并网逆变器的核心部件之一,它通过接收来自电网及太阳能电池板的信息来调整设备的工作状态,以确保能源转换效率和系统的稳定运行。 3. 避雷器的作用与意义:避雷器是一种保护装置,能够吸收过电压,并防止由于雷击或电力系统故障导致的电气损害。在光伏发电系统中正确配置避雷器对于保证控制器以及逆变器的安全性至关重要。 4. Simulink仿真技术的应用实践:借助Simulink平台,研究者可以构建光伏并网逆变器和控制器的数学模型,并将其中包含的避雷保护策略进行模拟测试。通过这些仿真实验能够观察到设备在遭遇雷击或过电压情况下的响应行为及防护效果。 5. 优化方案的研究与开发:经过一系列仿真分析,研究人员可以比较不同设计参数下避雷器的实际表现,在极端条件下评估其性能,并据此提出改进措施来提升保护效率和可靠性。 综上所述,对光伏并网逆变器控制器以及配套避雷装置进行Simulink仿真研究不仅有助于深化我们对该领域内关键设备防护机制的理解,还能通过实际的模拟测试指导未来的工程设计工作。这项工作的开展对于推动光伏发电技术的进步及其广泛应用具有重要的现实意义。
  • QPR.zip_LCL_QPR_分析_问题在表现
    优质
    本研究探讨了光伏并网系统中QPR(快速功率限制)与LCL滤波器结合的应用,特别关注逆变器故障对电网稳定性的影响及故障检测方法。 电网短路故障下LCL型光伏并网逆变器控制研究探讨了在电网出现短路故障情况下,如何有效控制LCL型光伏并网逆变器的运行,以确保系统的稳定性和安全性。
  • 仿研究
    优质
    本研究聚焦于通过仿真技术深入探究光伏并网逆变器的工作原理与优化设计,致力于提升光伏发电系统的效率及稳定性。 为了提升光伏发电效率及电能质量,我们对光伏并网逆变器进行了深入研究。针对光伏最大功率点跟踪问题,改进了传统的电导增量法,并提出了一种新的控制算法——改进的电导增量控制算法。此算法能够迅速且精确地追踪到最大功率点;有效减少了系统在接近最大功率点时出现的振荡现象;同时提升了光伏发电效率。 在逆变器控制系统方面,我们采用了电压外环和电流内环相结合的双PI(比例积分)控制器设计。其中,电压外环负责稳定中间直流母线上的电压水平,而电流内环则用于确保输出电流的稳定性。这两者通过中间直流母线相互连接,并且系统控制具有良好的快速响应能力和稳定性;减少了谐波含量,使得输出电流呈现出较好的正弦特性,并与电网电压保持同频和同步相位,从而提升了电能质量。 最后,我们利用MATLAB软件对光伏并网逆变器进行了建模仿真。实验结果表明该设计的系统运行稳定且性能良好,达到了预期的设计目标。
  • _PV_inverter_grid_connected.zip_单相
    优质
    本资源为光伏并网逆变器_PV_inverter_grid_connected.zip_单相光伏系统电压控制,提供单相光伏系统的电压控制策略与实现方案,适用于研究和教学。 本段落以单相光伏发电并网系统为研究对象,深入探讨了光伏发电并网技术,并详细分析了最大功率点跟踪技术和逆变器并网控制技术。在Simulink中构建了光伏电池模型、基于扰动观测法的MPPT模型以及采用电压电流双闭环SPWM控制策略实现并网的技术方案。
  • 2源+配.zip_10kV_boost___配
    优质
    本资料深入探讨10kV光伏系统的Boost逆变技术及其在电网中的应用,分析了光伏电源并网与配电网络的集成方案。 这是关于光伏电源并网的配网模型,其中包括boost电路、MPPT控制器、逆变器以及10kV配电网。
  • 揭秘单相环路.rar___单相_单相_
    优质
    本资料深入解析了单相光伏并网逆变器的核心环路控制系统,涵盖其工作原理、设计方法及优化策略,适用于研究和开发人员参考。 这段资料详细介绍了单相光伏逆变器的环路控制原理。