Advertisement

四种PCB热焊盘及散热过孔的设计形式介绍

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文介绍了用于PCB设计的四种不同类型的热焊盘和散热过孔的形式及其特点,帮助工程师优化电路板的热性能。 PQFN封装底部的大面积热焊盘提供了可靠的焊接区域,在PCB设计上需要对应设置相应的热焊盘及传热过孔来配合其散热需求。这些过孔为芯片向PCB传导热量提供有效路径,具体数量与尺寸则依据器件的应用场景、功率大小以及电性能要求而定。根据热仿真建议,散热过孔的间距应在1.0至12毫米之间,直径也应保持在相同的范围内。 有四种设计形式可供选择:(a)和(b)采用干膜阻焊技术从顶部或底部覆盖过孔;(c)使用液态感光材料填充于底部以提供保护;而(d)则采取“贯通孔”方式。这四类散热过孔的设计各有优劣: 1. (a)项设计通过在顶面进行阻焊来控制气泡形成,但会妨碍PCB顶部的焊膏印制。 2. 对于(b)、(c),底部覆盖或填充的方式可能会导致气体逸出形成的较大气孔,并影响热性能表现。 3. 而采用“贯通孔”的设计(d)允许锡料流入过孔内部以减小气泡尺寸,但也会相应减少元件底面焊盘上的锡量。 关于PCB的阻焊层结构推荐使用非对称式NSMD形式。建议开口比焊盘大120至150微米,即铜箔到阻焊材料之间的间隙为60至75纳米。当引脚间距小于0.5毫米时,则可以考虑省略相邻引脚间的阻焊层处理以简化制造过程并提高生产效率。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PCB
    优质
    本文介绍了用于PCB设计的四种不同类型的热焊盘和散热过孔的形式及其特点,帮助工程师优化电路板的热性能。 PQFN封装底部的大面积热焊盘提供了可靠的焊接区域,在PCB设计上需要对应设置相应的热焊盘及传热过孔来配合其散热需求。这些过孔为芯片向PCB传导热量提供有效路径,具体数量与尺寸则依据器件的应用场景、功率大小以及电性能要求而定。根据热仿真建议,散热过孔的间距应在1.0至12毫米之间,直径也应保持在相同的范围内。 有四种设计形式可供选择:(a)和(b)采用干膜阻焊技术从顶部或底部覆盖过孔;(c)使用液态感光材料填充于底部以提供保护;而(d)则采取“贯通孔”方式。这四类散热过孔的设计各有优劣: 1. (a)项设计通过在顶面进行阻焊来控制气泡形成,但会妨碍PCB顶部的焊膏印制。 2. 对于(b)、(c),底部覆盖或填充的方式可能会导致气体逸出形成的较大气孔,并影响热性能表现。 3. 而采用“贯通孔”的设计(d)允许锡料流入过孔内部以减小气泡尺寸,但也会相应减少元件底面焊盘上的锡量。 关于PCB的阻焊层结构推荐使用非对称式NSMD形式。建议开口比焊盘大120至150微米,即铜箔到阻焊材料之间的间隙为60至75纳米。当引脚间距小于0.5毫米时,则可以考虑省略相邻引脚间的阻焊层处理以简化制造过程并提高生产效率。
  • 和反
    优质
    热焊盘和反焊盘是电路板设计中的重要概念。热焊盘用于增强焊接区域的导热性,而反焊盘则是在焊盘周围添加阻焊层开口以提高焊接可靠性。两者共同作用于提升电子产品的制造质量和稳定性。 热焊盘通常出现在大面积的接地或接电区域中,并与常用元器件的引脚相连。在处理这些连接点时需要全面考虑各种因素。从电气性能的角度来看,元件引脚的焊盘最好能够完全接触铜面以确保良好的导电性;然而,在实际焊接和装配过程中可能会出现一些不利的问题。
  • 平衡UDF_Fluent换系数_多质_udf_换_多质_
    优质
    本资源提供了一种用于FLUENT软件的用户自定义函数(UDF),专注于计算多孔介质中的热平衡及换热系数,适用于复杂传热问题的研究与仿真。 UDF 用于 Fluent 多孔介质模型的非热平衡状态下的局部换热系数。
  • 布局尺寸规范
    优质
    本设计规范旨在提供关于布局焊盘及过孔尺寸的标准指导,确保电路板制造的一致性和可靠性,优化电气性能和生产效率。 关于PCB制作焊盘过孔大小设计标准的相关资料非常实用。
  • FLOTHERM电子系统仿真软件
    优质
    FLOTHERM是一款专业的电子系统热设计仿真软件,能够高效地进行三维空间内的传热分析,帮助工程师优化产品散热结构。 FLOTHERM是由英国FLOMERICS软件公司开发的一套电子系统散热仿真分析软件,被世界各地的电子电路设计工程师和电子系统结构设计工程师广泛使用。 该软件采用了成熟的CFD(计算流体动力学)和数值传热学技术,并结合了该公司在电子设备传热方面的丰富经验和数据库。此外,FLOTHERM还拥有大量专门针对电子工业开发的模型库。通过应用FLOTHERM,用户可以在不同层次上高效且准确地进行系统散热、温度场以及内部流体运动状态的仿真分析,包括从环境层到芯片详细结构层等各个层面。
  • 功率器件
    优质
    《功率器件的热设计与散热计算》一书聚焦于电子设备中关键组件——功率器件的热管理技术。书中详细探讨了如何有效进行热设计及散热分析,以确保设备高效稳定运行,并减少能耗和成本。 通过对功率器件发热原理的分析及散热计算,可以指导设计散热方式并选择合适的散热器,确保功率器件在安全的工作温度范围内运行,减少质量问题,并提高电子产品的可靠性。本段落主要介绍功率器件的设计以及相关的散热计算方法。
  • 模块.pdf
    优质
    本PDF文件详细介绍了传热模块的基本原理、应用范围及使用方法,包括各类换热器的设计和性能分析。 在现代科技领域,计算机模拟仿真已成为研究和解决问题的重要手段,在工程分析及物理现象模拟方面发挥着关键作用。COMSOL Multiphysics是一款广泛使用的多物理场耦合模拟软件,提供集成的仿真环境来处理各种物理过程,包括热传递、流体动力学和电磁场等。 本段落主要介绍的是COMSOL中的传热模块,该模块专门用于分析与模拟温度分布问题,在从事热研究及工程应用的技术人员中具有指导意义。此模块基于热力学的基本原理,可以解决一维至三维空间内稳态或非稳态的热量传递问题,并涵盖导热、对流和辐射等多种机制。 为了更有效地使用COMSOL传热模块进行温度场分析,需要掌握以下关键知识点: 1. 物理场设置:根据实际物理情况选择合适的物理模型。比如纯导热过程可选用稳态传热;时间变化的温度分布则需采用瞬态模式。 2. 材料属性:明确材料的热物性参数(如导热率、密度及比容)对模拟结果影响重大,需要为每种材料定义这些特性,并考虑其随温度的变化情况。 3. 几何建模:准确地建立几何模型是必要的步骤。可以使用COMSOL自带工具或导入CAD文件来创建所需形状。 4. 网格划分:通过网格化处理将连续的实体转换成离散元素,以支持后续计算。合理选择网格类型和密度能提高模拟精度与效率。 5. 边界条件设置:定义边界上热量交换的方式(如温度、热流或对流换热)对于精确建模至关重要。 6. 初始条件设定:瞬态分析时初始状态的确定尤为关键,可通过指定起始温度分布或者用稳态解作为起点来实现这一目标。 7. 求解器选择:COMSOL提供了多种求解算法以适应不同类型的问题。根据具体需求挑选合适的线性或非线性、稳态或瞬态求解方法是必要的步骤。 8. 结果分析:完成计算后,利用提供的可视化工具(如温度分布图等)对数据进行解读和评估。 COMSOL传热模块被广泛应用于工程设计、科学研究及设备制造等领域。掌握其基本使用技巧可以帮助工程师和技术人员更准确高效地开展相关工作,并通过仿真预测潜在问题从而优化设计方案。
  • BGA规范——PCB标准
    优质
    本文章详细介绍了BGA焊盘的设计规范,旨在为PCB设计师提供一套全面的标准和指导原则,确保电路板的质量与可靠性。 对于PITCH为0.5毫米且元件焊球直径为0.3毫米的BGA焊盘设计,推荐使用特定尺寸的焊盘。如果焊盘尺寸过大或内间距小于推荐值,则可能导致短路;而若焊盘过小,则可能影响焊接点强度。
  • 怎样区分
    优质
    本文介绍了如何区分电路板上的焊盘和过孔。通过解析其定义、功能及在PCB布局中的应用来帮助读者了解两者之间的差异,并提供识别技巧。 在印刷电路板(PCB)的设计与制造过程中,焊盘(Pad)和过孔(Via)发挥着至关重要的作用,它们共同确保了电路板上电子元件和线路的正确连接。尽管两者都用于导电,但其功能及设计要求存在本质的区别。 焊盘主要用作安装电子元件的位置,并通过焊接将这些元件引线固定到PCB上。在设计时需考虑诸多因素:如尺寸、形状以及与引线孔的关系等。通常情况下,焊盘的大小应根据引线孔直径和最小环形宽度来确定;较大的焊盘可以提高焊接可靠性,但同时也需要考虑到布线密度以避免占用过多空间影响整体设计效率及成本效益。另外,在确保元件引脚位于焊盘中心的同时,还需保证孔径略大于引脚直径。常见的焊盘形状包括圆形、方形、椭圆型以及异形等。 过孔的主要作用是在PCB的不同层之间提供电气连接通道。它分为两类:通孔与盲埋孔(Via)。尽管两者均可插入元件管脚实现类似功能,但在制造过程中却有不同的处理方式。例如,在实际生产中,过孔的直径通常会比设计尺寸略小;这是因为在沉铜工艺后,其实际大小可能会缩小0.1mm左右。与此相反的是通孔焊盘在钻孔后的实际直径则可能略微大于设计值。为了确保电镀过程中的可靠连接,过孔的标准环宽一般设定为0.15mm。 有时,在PCB的实际布局中会将过孔放置于焊盘之上;这通常是为了节省空间或应对复杂的布线需求。然而,并非所有设计师都推荐这种做法,因为可能引发贴片元件焊接不良的问题。支持者认为此举可以增强电流承载能力和散热性能;但反对意见则指出回流焊工艺更适合使用在这些元件上,而过孔的存在可能导致熔融锡的流失增加虚焊风险。 为了确保基板与焊盘之间的连接可靠性,在设计时通常会扩大其尺寸;不过也需兼顾布线密度问题。一般而言,圆环宽度应选择0.5~1.0mm之间;对于像双列直插式集成电路这样的大型元件,推荐的直径范围为1.5~1.6mm以穿过宽约0.3~0.4mm的印制导线。设计时需遵守相关规范与建议参数来保证电子组件固定可靠且焊点质量优良。 尽管功能不同,但无论是焊盘还是过孔都对PCB的设计和制造至关重要。设计师在进行电路板设计时应充分了解各种类型焊盘及过孔的特点及其生产要求以做出符合规范并具有成本效益的决策;同时熟悉相关生产工艺也非常重要以便于合理处理布局中的问题。通过精确地设计与布置这些关键组件,可以确保最终电子产品的性能和可靠性。
  • L298N PCB封装
    优质
    这款PCB封装产品搭载了L298N芯片,并配备了高效的散热片设计,适用于电机驱动和其他需要高功率处理的应用场景。 L298N(带散热片),瓷片电容,电解电容(5*11、8*12)