Advertisement

二路归并排序的递归实现算法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
简介:本文介绍了一种基于递归技术实现的二路归并排序算法。通过将数组分为两部分分别进行排序和合并,展示了该算法的有效性和简洁性。 递归实现的二路归并排序算法用于对结构体按其内部一个关键字进行排序,在本例中是按照任务结构体中的收益字段进行排序。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    简介:本文介绍了一种基于递归技术实现的二路归并排序算法。通过将数组分为两部分分别进行排序和合并,展示了该算法的有效性和简洁性。 递归实现的二路归并排序算法用于对结构体按其内部一个关键字进行排序,在本例中是按照任务结构体中的收益字段进行排序。
  • [] 9. 和非及其复杂度分析(分治、复杂度分析)
    优质
    本视频讲解归并排序算法,包括其递归与非递归两种实现方式,并深入剖析该算法的时间及空间复杂度。通过学习,掌握归并排序的核心思想和应用技巧。 1. 基本思想 在数列排序过程中,如果只有一个数字,则该序列自然有序;如果有两个数字,则只需一次比较即可完成排序。也就是说,数据量越小,排序就越容易处理。然而,当面对大量数据组成的序列时,直接进行排序会非常困难。为了解决这一问题,可以考虑将大序列分解成较小的子序列,直到每个子序列仅包含一个元素(此时它们自然有序),然后通过合并这些已排好序的小序列来完成整个数列的排序过程。 归并排序的基本思路与快速排序相似,唯一的区别在于归并排序选取数组中间位置作为基准值。
  • 冒泡
    优质
    本段介绍一种基于递归技术实现的经典排序算法——递归冒泡排序。通过反复迭代相邻元素比较与交换的过程,最终使数据序列达到有序状态。此方法虽直观但效率较低。 冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。递归版本的冒泡排序可以通过调用自身来实现相同的功能,每次将未排序的部分缩小范围直到完成整个序列的排序。
  • 数据结构
    优质
    本文章探讨了在非递归框架下实现数据结构归并排序的方法。通过迭代方式优化传统递归方法,旨在减少函数调用开销,并提高程序执行效率。适合对算法和数据结构感兴趣的读者深入学习。 描述用函数实现归并排序(非递归算法),并输出每趟排序的结果。 输入: 第一行:键盘输入待排序关键的个数n。 第二行:输入n个待排序关键字,用空格分隔数据。 输出: 每行输出每趟排序的结果,数据之间用一个空格分隔。 样例输入: 10 5 4 8 0 9 3 2 6 7 1 样例输出: 4 5 0 8 3 9 2 6 1 7 0 4 5 8 2 3 6 9 1 7 0 2 3 4 5 6 8 9 1 7 0 1 2 3 4 5 6 7 8 9
  • C语言中
    优质
    简介:本文介绍了在C语言中实现的二路归并排序算法,通过将大规模数据分解为小规模有序数组,再进行有序合并,最终完成高效稳定的排序过程。 我用C语言编写了一个二路归并排序算法的代码,并且已经完成了这个简单的二路归并排序小项目。以下是相关代码: ```c #include void merge(int arr[], int left, int mid, int right) { int i, j, k; int n1 = mid - left + 1; int n2 = right - mid; // 创建临时数组 int L[n1], R[n2]; // 复制数据到临时数组 L[] 和 R[] for (i = 0; i < n1; i++) L[i] = arr[left + i]; for (j = 0; j < n2; j++) R[j] = arr[mid + 1 + j]; // 合并临时数组回原数组 i = 0; j = 0; k = left; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } // 复制 L[] 的剩余元素 while (i < n1) { arr[k] = L[i]; i++; k++; } // 复制 R[] 的剩余元素 while (j < n2) { arr[k] = R[j]; j++; k++; } } void mergeSort(int arr[], int left, int right) { if (left >= right) return; int mid = left + (right - left) / 2; mergeSort(arr, left, mid); mergeSort(arr, mid + 1, right); merge(arr, left, mid, right); } void printArray(int arr[], int size) { for (int i = 0; i < size; i++) printf(%d , arr[i]); printf(\n); } int main() { int arr[] = {12, 11, 13, 5, 6, 7}; int arr_size = sizeof(arr) / sizeof(arr[0]); printf(Given array is \n); printArray(arr, arr_size); mergeSort(arr, 0, arr_size - 1); printf(\nSorted array is \n); printArray(arr, arr_size); return 0; } ``` 这段代码实现了二路归并排序算法,可以对给定数组进行升序排列。
  • MATLAB插入.rar
    优质
    本资源包含使用MATLAB编写的插入排序、二分归并排序以及常规归并排序算法代码,适用于学习与教学。 在《算法设计与分析》课程中使用MATLAB实现插入排序、二分归并排序和归并排序的实验。这些实验包括编写.m文件以及撰写详细的实验报告,适用于安徽大学本科阶段的学习内容。
  • C++中
    优质
    本文介绍了如何在C++编程语言中实现高效的归并排序算法,通过代码示例详细解释了其工作原理和步骤。 C++实现归并排序算法是基于分治法的一种有效方法。该算法通过将已有序的子序列合并成完全有序的序列来完成整个数组的排序工作。 归并排序的工作原理如下: 1. 分配一个大小为两个已经排序过的子序列之和的空间,用于存放最终合并后的结果。 2. 设置两个指针分别指向这两个有序子序列的起始位置。 3. 比较两指针所指示元素,选择较小的一个放入到临时空间中,并移动对应的指针至下一个位置。 4. 重复步骤3直到某一个指针超出其所在序列尾部。 5. 将另一个未处理完的序列剩余部分直接复制到合并后的结果末尾。 在C++编程语言环境中实现归并排序时,通常采用递归函数来完成。以下是一个简单的示例代码: ```cpp #include using namespace std; void Merge(int arr[], int temp[], int start, int mid, int end) { int i = start, j = mid + 1, k = start; while (i != mid + 1 && j != end + 1) { if (arr[i] > arr[j]) temp[k++] = arr[j++]; else temp[k++] = arr[i++]; } while (i != mid + 1) temp[k++] = arr[i++]; while (j != end + 1) temp[k++] = arr[j++]; for (i = start; i <= end; i++) arr[i] = temp[i]; } void MergeSort(int arr[], int temp[], int start, int end) { if (start < end) { int mid = start + (end - start) / 2; MergeSort(arr, temp, start, mid); MergeSort(arr, temp, mid + 1, end); Merge(arr, temp, start, mid, end); } } int main() { int a[8] = {50, 10, 20, 30, 70, 40, 80, 60}; int i; int b[8]; MergeSort(a, b, 0, 7); for (i = 0; i < 8; i++) cout << a[i] << ; return 0; } ``` 此示例展示了如何使用递归函数实现归并排序。首先,数组被分成两个子序列,并对每个子序列进行递归调用排序操作;然后通过Merge函数将这两个已排序的子序列合并为一个完全有序的大序列。 归并排序的时间复杂度是O(n log n),空间复杂度是O(n)。因此它是一种高效的算法,同时也是一种稳定的排序方式(即保持原始顺序)。这种技术在解决各种排序问题时非常有用。
  • 函数
    优质
    本文探讨了递归排序法及其在编程中的应用,并深入分析了递归函数的工作原理和实现技巧。 学习C语言编程时,可以深入研究排序算法以提升技能水平。
  • ——
    优质
    归并排序是一种高效的稳定的排序算法,通过分治法将数组分成较小的部分进行递归排序,再合并有序子序列以达到整个数组有序。 生成500个随机数,并对这些随机数进行归并排序。
  • 与非快速
    优质
    本文探讨了在编程中如何使用递归和非递归的方法来实现高效的快速排序算法,并分析比较两者的特点及应用场景。 此文档提供了快速排序算法的递归和非递归两种实现方式的具体代码。