Advertisement

MTK电路原理详解分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
《MTK电路原理详解分析》是一本深入剖析MediaTek平台电路设计与工作原理的专业书籍,适合电子工程师及技术爱好者阅读学习。 ### MTK电路原理详析 #### 一、MTK电路概览 MediaTek Inc.(简称MTK)是一家全球领先的无晶圆厂半导体公司,专注于多媒体芯片组设计,其产品广泛应用于智能手机和平板电脑等领域。本段落将针对MTK芯片组中的关键电路进行深入分析,包括但不限于mic电路、耳机电路、mp3电路、FM电路、T-Flash电路、键盘电路、开关机电路、SIM卡原理、键盘灯控制、马达电路、充电电路、RTC(实时时钟)、Camera(相机)和Bluetooth(蓝牙)等。 #### 二、MTK核心组件解析 **1. BB芯片与Transceiver** - **6229 BB芯片**: 使用于MTK平台,Transeiver采用的是MT6140。相较于其后继产品6230,6229增加了对200万像素摄像头的支持;而后者仅支持30万像素。此外,6229内部集成了一个DSP用于支持EDGE技术,并且运行频率高达104MHz,这使得它不仅能够支持OTG(On-The-Go)、TV OUT功能,还具备Wi-Fi连接能力。 - **OTG接口**: 只能兼容USB 1.1版本,数据线长度应不超过20cm以防止信号衰减和反射问题。 - **RTC晶振**: 使用32.768KHz的晶体振荡器提供基准时序信号,用于实时计时。这种频率便于分频,并能够精确实现秒级时间计算。 **2. 存储解决方案** - **NOR + NAND存储方案**: 传统方法中使用NOR来保存BIOS代码而将操作系统和应用程序存于NAND之中。这种方式虽然灵活但成本较高。 - **混合存储方式**: MTK采用了结合SRAM与NAND的混合型存储,这样既能降低成本又能提升存储密度。此方案直接从NAND引导系统启动,减少了对昂贵的引导NOR的需求,从而降低了总系统的成本。 #### 三、具体电路详解 **1. MIC(麦克风)电路** - **偏置电压**: MICBIASP和MICBIASN为MIC提供约2.4V至2.7V之间的偏置电压。 - **滤波元件**: C204、C205用于去除射频信号干扰;C206抑制共模信号,而C201与C202则通过隔直通交保护功率放大器(PA)不饱和。 - **磁珠B201和B202**: 滤除高频干扰,并提高调频滤波效果。 **2. 耳机电路** - **检测机制**: 当耳机插入时,二极管导通使EINT为低电平,BB芯片据此判断耳机是否已经插入。 - **ADC(模数转换器)检测**: 插入耳机后还需要满足ADC电压大于1V且EINT为低电平的条件才能确定耳机完全插入。 **3. MP3电路** - **D类功放**: MTK采用高效率、体积小的D类放大器。 - **噪声抑制**: C243、C244和C245用于消除900MHz与1800MHz频段内的高频噪音及共模干扰。 **4. FM电路** - **调频接收**: FM电路主要用于收音机功能,包括信号接收、解码以及音频输出等环节的实现。 **5. T-Flash(TF卡)电路** - **存储扩展**: 支持TF卡来增加手机的可用存储空间。 **6. 开关键电路** - **电源管理**: 实现智能手机的开机与关机操作,涉及电源管理芯片和相关的控制逻辑设计。 **7. SIM卡电路** - **通信模块**: 读取SIM卡信息是实现手机网络连接的基础功能之一。 **8. 其他电路** - **RTC(实时时钟)**: 提供精准的时间计算功能。 - **Camera(相机)**: 支持不同分辨率的摄像头使用需求。 - **Bluetooth(蓝牙)**: 实现无线通信和数据传输的功能。 - **充电电路**: 管理电池充放电过程,确保安全高效的电力供应。 - **马达电路**: 控制手机震动反馈机制以提供触觉提示。 - **键盘灯控制**: 为夜间使用时的照明需求而设计。 #### 四、总结 通过对MTK芯片组中各关键电路原理的深入剖析,我们可以了解到MTK不仅集成了多种高级功能(如Wi-Fi和OTG等),还优化了存储方案以降低成本并提高性能。同时,在各个子系统的电路细节上也有诸多考虑,例如MIC中的滤波设计、耳机插拔

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MTK
    优质
    《MTK电路原理详解分析》是一本深入剖析MediaTek平台电路设计与工作原理的专业书籍,适合电子工程师及技术爱好者阅读学习。 ### MTK电路原理详析 #### 一、MTK电路概览 MediaTek Inc.(简称MTK)是一家全球领先的无晶圆厂半导体公司,专注于多媒体芯片组设计,其产品广泛应用于智能手机和平板电脑等领域。本段落将针对MTK芯片组中的关键电路进行深入分析,包括但不限于mic电路、耳机电路、mp3电路、FM电路、T-Flash电路、键盘电路、开关机电路、SIM卡原理、键盘灯控制、马达电路、充电电路、RTC(实时时钟)、Camera(相机)和Bluetooth(蓝牙)等。 #### 二、MTK核心组件解析 **1. BB芯片与Transceiver** - **6229 BB芯片**: 使用于MTK平台,Transeiver采用的是MT6140。相较于其后继产品6230,6229增加了对200万像素摄像头的支持;而后者仅支持30万像素。此外,6229内部集成了一个DSP用于支持EDGE技术,并且运行频率高达104MHz,这使得它不仅能够支持OTG(On-The-Go)、TV OUT功能,还具备Wi-Fi连接能力。 - **OTG接口**: 只能兼容USB 1.1版本,数据线长度应不超过20cm以防止信号衰减和反射问题。 - **RTC晶振**: 使用32.768KHz的晶体振荡器提供基准时序信号,用于实时计时。这种频率便于分频,并能够精确实现秒级时间计算。 **2. 存储解决方案** - **NOR + NAND存储方案**: 传统方法中使用NOR来保存BIOS代码而将操作系统和应用程序存于NAND之中。这种方式虽然灵活但成本较高。 - **混合存储方式**: MTK采用了结合SRAM与NAND的混合型存储,这样既能降低成本又能提升存储密度。此方案直接从NAND引导系统启动,减少了对昂贵的引导NOR的需求,从而降低了总系统的成本。 #### 三、具体电路详解 **1. MIC(麦克风)电路** - **偏置电压**: MICBIASP和MICBIASN为MIC提供约2.4V至2.7V之间的偏置电压。 - **滤波元件**: C204、C205用于去除射频信号干扰;C206抑制共模信号,而C201与C202则通过隔直通交保护功率放大器(PA)不饱和。 - **磁珠B201和B202**: 滤除高频干扰,并提高调频滤波效果。 **2. 耳机电路** - **检测机制**: 当耳机插入时,二极管导通使EINT为低电平,BB芯片据此判断耳机是否已经插入。 - **ADC(模数转换器)检测**: 插入耳机后还需要满足ADC电压大于1V且EINT为低电平的条件才能确定耳机完全插入。 **3. MP3电路** - **D类功放**: MTK采用高效率、体积小的D类放大器。 - **噪声抑制**: C243、C244和C245用于消除900MHz与1800MHz频段内的高频噪音及共模干扰。 **4. FM电路** - **调频接收**: FM电路主要用于收音机功能,包括信号接收、解码以及音频输出等环节的实现。 **5. T-Flash(TF卡)电路** - **存储扩展**: 支持TF卡来增加手机的可用存储空间。 **6. 开关键电路** - **电源管理**: 实现智能手机的开机与关机操作,涉及电源管理芯片和相关的控制逻辑设计。 **7. SIM卡电路** - **通信模块**: 读取SIM卡信息是实现手机网络连接的基础功能之一。 **8. 其他电路** - **RTC(实时时钟)**: 提供精准的时间计算功能。 - **Camera(相机)**: 支持不同分辨率的摄像头使用需求。 - **Bluetooth(蓝牙)**: 实现无线通信和数据传输的功能。 - **充电电路**: 管理电池充放电过程,确保安全高效的电力供应。 - **马达电路**: 控制手机震动反馈机制以提供触觉提示。 - **键盘灯控制**: 为夜间使用时的照明需求而设计。 #### 四、总结 通过对MTK芯片组中各关键电路原理的深入剖析,我们可以了解到MTK不仅集成了多种高级功能(如Wi-Fi和OTG等),还优化了存储方案以降低成本并提高性能。同时,在各个子系统的电路细节上也有诸多考虑,例如MIC中的滤波设计、耳机插拔
  • MTK手机基带-SIM卡
    优质
    本教程深入剖析MTK手机中SIM卡电路的工作原理,涵盖信号处理、数据传输及安全机制等关键环节,适合电子工程师与技术爱好者学习参考。 四、SIM卡电路 CPU SIM卡供电电源 MT6305 MT6305完成电平的转换作用。
  • 逆变及工作
    优质
    《逆变电路原理图详解及工作原理分析》一书深入浅出地介绍了逆变电路的工作机制和设计方法,通过详细解析各类典型逆变器的电路结构与运行机理,为读者提供了全面而实用的技术指导。 工作原理如下:当开关T1和T4闭合而T2和T3断开时,输出电压u0等于直流电源电压Ud;反之,当开关T1和T4断开且T2和T3闭合时,输出电压u0为-Ud。通过以频率fS交替切换上述两种状态,在电阻R上可以获得交变的电压波形(如图所示),其周期Ts等于1/fS。这样就将直流电压E转换成了交流电压uo。然而,uo包含多种谐波成分,若要获得正弦波电压,则需使用滤波器进行处理以去除不需要的频率分量。
  • 半桥及其工作
    优质
    本文详细解析了半桥电路的工作机制与应用特点,并深入探讨其工作原理,帮助读者全面理解该电路的设计与优化方法。 在PWM(脉宽调制)和电子镇流器的应用中,半桥电路扮演着重要角色。这种电路由两个功率开关器件构成,它们以图腾柱的形式连接,并输出方波信号。本段落将介绍半桥电路的工作原理,帮助读者更好地理解这一电路结构。
  • 读环测试
    优质
    本文章深入解析环路分析测试的概念、重要性及其工作原理,通过具体实例阐述如何进行有效的环路级软件测试,旨在帮助开发者提高代码质量。 开关电源因其极高的转换效率已成为主流产品之一。环路分析测试作为评估其性能的重要手段也日益受到重视。本段落将详细介绍该测试方法的原理及其应用。
  • HX711
    优质
    本资料深入解析HX711芯片的工作原理及其在高精度称重系统中的应用,涵盖其内部结构、引脚功能及典型电路设计,助力工程师掌握该传感器接口IC的核心技术。 【HX711电路原理图详解】 在电子工程领域内,HX711是一款专为高精度重量测量设计的专用模数转换器(ADC),常用于称重传感器的应用中。这款芯片能够将传感器输出的微小模拟信号转换成数字信号,以便于微控制器或其他数字设备进行处理。以下是关于HX711电路原理图及其关键组件的详细解析。 1. **HX711芯片** HX711是一个双通道24位Σ-Δ ADC,具有两个输入通道(INA和INB),可以连接到不同的传感器上。它具备高精度和低噪声特性,使其成为称重应用的理想选择。该芯片内部包含一个可编程增益放大器,能够根据需要调整输入信号的放大倍数。 2. **桥式传感器配置** 桥式传感器通常用于测量力或压力。由四个电阻组成电桥结构:A、B、C和D代表了电桥的各个角点。当受到外力作用时,这些电阻值会发生变化,产生不平衡电压信号作为HX711的输入。 3. **输入通道(INA+、INB+、INB-)** INA+与INB+是正向输入端子,连接至电桥传感器产生的差分输出。而INB-则是负向输入端口,通常接地来帮助减少噪声干扰。通过调整增益设置值,确保HX711能够准确捕捉到微小的电压变化。 4. **电源(VDD、VBG)** VDD为芯片提供运行所需的电力供应,一般使用+5伏特电平;而VBG则是参考电压输入端口用于内部基准信号校准和稳定化处理。 5. **PD_SCK(脉冲下降时钟)** PD_SCK是数据采样时钟的控制线。它由外部微控制器提供,并在每次从高到低转变的时候触发HX711进行一次新的数据采集过程,随后在下一个上升沿输出结果信息给接收端。 6. **DOUT(数据输出)** DOUT负责发送24位二进制格式的数据流作为转换完成后的信号。这个接口需要与微控制器的SPI通信协议相匹配才能正常工作。 7. **RATE(采样速率选择)** RATE引脚用于设定DOUT端口上的传输速度,通过连接不同阻值电阻可以调节输出频率以适应特定应用需求。 8. **AGND、GND、VCC** AGND表示模拟地线部分;GND则是数字电路的接地参考点。它们都应与系统总地相接确保信号稳定性。同时VCC为芯片供电,通常等同于VDD电压值。 9. **C8、C5、C1、C6** 这些电容器被用来过滤掉电力供应中的高频噪声和低频波动成分,从而提高整个系统的抗干扰能力。 10. **SIP4、SIP6** SIP4与SIP6可能指的是四脚及六角单排插针封装类型,用于连接其他电子组件如电阻器或电容器等配件。 HX711电路原理图主要涵盖了高精度ADC的应用细节,包括桥式传感器的设置方法、电源管理方案、数据采集流程以及系统级噪声抑制策略。理解这些内容对于设计和调试基于HX711芯片构建重量测量系统的工程师来说至关重要。
  • 高频
    优质
    《高频电路原理及分析解答》一书深入浅出地介绍了高频电路的基本理论、设计方法及其应用实践,通过大量实例解析帮助读者掌握复杂高频电路的设计技巧和调试策略。 ### 第一章 绪论 #### 1-2 高频信号的应用及定义 高频信号是指适用于天线发射、传播与接收的射频信号。采用高频信号的主要原因包括: (1)频率越高,可用的带宽就越宽,信道容量也就越大,并且可以减少或避免频道间的干扰; (2)高频信号更易于通过天线辐射和接收,在这种情况下,只有当天线尺寸接近于信号波长时,才能获得较高的发射效率与接收灵敏度。因此,使用较小功率的信号也能传输到较远的距离。 #### 1-3 调制的意义及方法 无线通信中进行调制的原因是基带信息通常为频率较低的信号,为了提高发射和接收效率,并减小天线尺寸,需要将这些低频信号搬移到高频载波附近。此外,通过调制还可以实现信道复用。 **模拟调制方式包括:** - 调幅(AM) - 抑制载波双边带调幅(DSB) - 单边带调幅(SSB) - 残留单边带调幅(VSSB) 以及 - 调频(FM) - 调相(PM) **数字调制方式包括:** - 频率键控(FSK) - 幅度键控(ASK) - 相位键控(PSK) #### 第二章 高频电路基础 ##### 2.1 中频放大器参数计算 假设收音机的中频放大器中心频率为465kHz,带宽B_0.707为8kHz,回路电容C为200pF。根据这些信息可以推导出: - **回路电感L**: \[ L = \frac{1}{\omega^2 C} = \frac{1}{(2\pi f)^2 C} = \frac{1}{(2\pi * 465*10^{3})^2 * 200*10^{-12}} \approx 0.586 mH \] - **有载品质因数Q_L**: \[ Q_{L} = \frac{f_0}{B_{0.707}} = \frac{465*10^{3}}{8*10^{3}} = 58.125 \] 假设电感线圈的品质因数Q_0为100,计算需要并联的电阻R来满足要求: - **并联电阻R**: \[ R = \frac{L\omega^2}{Q_{0}} = \frac{(0.586*10^{-3}) (2\pi *465*10^{3})^2}{100} \approx 236.66 kΩ \] ##### 2.2 波段内调谐用的并联振荡回路 给定可变电容C的变化范围为12~260pF,微调电容C_t,要求此回路的调谐范围为535~1605kHz。根据这些条件可以计算出: - **回路电感L** 和 **微调电容C_t** \[ L = \frac{1}{\omega^2 (C + C_{t})} = \frac{1}{(2\pi f)^2 (C+C_{t})} \] 当f_min为535kHz,C_min为12pF;而f_max为1605kHz,C_max为260pF时,可以求出L大约是0.3175mH 和 C_t大约是19pF。 通过这些计算和分析,我们详细了解了无线通信系统的工作原理、高频信号的重要性以及调制技术的不同方法。同时掌握了基本的高频电路参数计算技巧,这对于理解现代通信系统的运作至关重要。
  • TL494逆变器
    优质
    本资料深入剖析TL494芯片在逆变器中的应用,涵盖电路设计、工作原理及优化技巧,适合电子工程师和技术爱好者参考学习。 本段落主要分析了TL494逆变器电路图的原理,希望能对你学习有所帮助。
  • FM调器
    优质
    本文章深入解析了FM(频率调制)解调器的工作原理及应用,详细介绍了其内部结构和信号处理流程,适合电子工程爱好者和技术人员参考学习。 本段落主要讲述的是FM调制解调器的工作原理。
  • 手机充工作
    优质
    本文将详细介绍手机充电器的工作机制和内部电路结构,帮助读者理解手机充电过程中的电压转换、电流调节等关键步骤。适合对电子电路感兴趣的用户阅读。 本段落主要解析了手机充电器电路图的原理,下面一起来学习一下。