Advertisement

AM/FM/SW无线电接收器-Si4730/Si4735电路设计方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本方案基于Si4730/Si4735芯片设计AM/FM/SW无线电接收器,涵盖硬件选型、软件配置及调试步骤,适用于便携音频设备。 我设计了一个具有DSP技术的FM立体声/ AM / SHORTWAVE无线电接收器,并使用Arduino Uno或Nano以及1.8英寸彩色TFT ST7735显示屏来实现这一项目。 硬件组件包括: - Arduino UNO × 1个 - 带按钮的旋转编码器 × 1个 - 按钮开关(瞬间)× 3个 - 阻容元件:电容器、电阻和电感,具体参数如下: - 电容器: 10 µF, 47 µF - 电阻: 1kΩ ×2, 10kΩ ×1, 100 Ω×1, 2.2 kΩ×2 - 电感:10uH ×2 - Silicon Labs PL102BA-S V2模块Si4730-D60 × 1个 - TFT ST7735 1.8英寸SPI彩色显示屏 × 1个 - 铁氧体条形天线(300 uH)× 1根 此无线电接收器具有以下特性: - 使用Si4730-D60集成电路,它是一个完整的接收器,并且采用了与SDR接收器相同的DSP技术。 - Arduino通过I2C数据接口发送控制命令给Si4730-D60。图形界面则由1.8英寸ST7735彩色TFT显示屏构成,采用SPI数据接口进行通信。 - 显示屏可以显示频率、信号强度以及频带波长等信息,并支持两种颜色主题和14个不同频段的选择功能。 - 此外还设计了AM选择的七个BW滤波器。 - 支持从100kHz到30MHz范围内的LW/MW/SW/CB接收。 为了输出音频,需要额外连接外部放大设备,例如计算机或具有线路输入端口的扬声器;也可以使用LM386 IC组装一个简单的DIY放大器。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • AM/FM/SW线-Si4730/Si4735
    优质
    本方案基于Si4730/Si4735芯片设计AM/FM/SW无线电接收器,涵盖硬件选型、软件配置及调试步骤,适用于便携音频设备。 我设计了一个具有DSP技术的FM立体声/ AM / SHORTWAVE无线电接收器,并使用Arduino Uno或Nano以及1.8英寸彩色TFT ST7735显示屏来实现这一项目。 硬件组件包括: - Arduino UNO × 1个 - 带按钮的旋转编码器 × 1个 - 按钮开关(瞬间)× 3个 - 阻容元件:电容器、电阻和电感,具体参数如下: - 电容器: 10 µF, 47 µF - 电阻: 1kΩ ×2, 10kΩ ×1, 100 Ω×1, 2.2 kΩ×2 - 电感:10uH ×2 - Silicon Labs PL102BA-S V2模块Si4730-D60 × 1个 - TFT ST7735 1.8英寸SPI彩色显示屏 × 1个 - 铁氧体条形天线(300 uH)× 1根 此无线电接收器具有以下特性: - 使用Si4730-D60集成电路,它是一个完整的接收器,并且采用了与SDR接收器相同的DSP技术。 - Arduino通过I2C数据接口发送控制命令给Si4730-D60。图形界面则由1.8英寸ST7735彩色TFT显示屏构成,采用SPI数据接口进行通信。 - 显示屏可以显示频率、信号强度以及频带波长等信息,并支持两种颜色主题和14个不同频段的选择功能。 - 此外还设计了AM选择的七个BW滤波器。 - 支持从100kHz到30MHz范围内的LW/MW/SW/CB接收。 为了输出音频,需要额外连接外部放大设备,例如计算机或具有线路输入端口的扬声器;也可以使用LM386 IC组装一个简单的DIY放大器。
  • RDA5807M I2C FM图和PCB-
    优质
    本项目提供RDA5807M I2C FM接收器的详细电路图及PCB设计方案,涵盖硬件连接与布局指导。适用于FM收音机开发和技术爱好者研究。 I2C FM接收器是一种基于RDA5807M的宽带FM接收模块。RDA5807M系列是最新一代单芯片广播FM立体声收音机调谐器,内置完全集成的合成器,并配备强大的低中频数字音频处理器。该接收器具备耳机插孔,可以连接耳机或外部音频设备。 特性包括: - Grove 接口支持 - 带宽:50 - 115MHz - 支持 RDS/RBDS - 低功耗设计 - 耳机接口 - 数字自增益控制 输入电压范围为3.3V至5V。
  • SI4730 FM/AM 示范程序
    优质
    SI4730 FM/AM示范程序是一款专为广播接收应用设计的软件演示工具。它利用了SiLabs公司的SI4730芯片的强大功能,支持FM和AM调频收音,方便开发者进行音频设备的研发与测试。 SI47XX收音系列IC(包括FM和AM)的DEMO程序是用C语言编写的。
  • 线端凌通
    优质
    本方案提供了一种高效的无线充电接收端设计电路图,采用凌通技术优化了能量传输效率和稳定性。适用于各种电子设备快速便捷地进行无线充电。 无线充电接收端凌通方案原理图已通过Qi认证。
  • 【NXP】15W线(含原理图和说明)-
    优质
    本资源提供NXP公司15W无线充电接收器的设计文档,包含详细原理图及设计说明,适用于工程师学习与参考。 这款15W无线充电接收器参考设计采用了飞思卡尔MWPR1516接收控制器IC,并支持所有必要的功能来管理和执行无线充电接收解决方案。该设计符合最新的中等功率工作组(MPWG)规范,能够兼容任何Qi认证的发射设备进行充电操作。 此演示板提供5V输出和3A电流,同时可以设置为其他电压输出(最高18V),用户只需要选择合适的外部降压芯片就可以支持双电池或三电池系统。设计中包括了BUCK架构以确保在不同应用需求下的灵活性,并且具备专门的FSK与CNC模型来简化MPWG双向通信开发过程。 该参考解决方案还配备了飞思卡尔嵌入式无线充电软件库,为客户提供更高的设计自由度和产品独特性。同时提供了一个友好的FreeMASTER用户界面促进用户体验交互。此外,它保留了接收器与主应用处理器(AP)的I2C和UART接口能力,并且根据WPC合规测试程序进行了预验证以确保符合标准。 该系统具备12位ADC和PGA,可以进行小型系统的功率损失检测并实现FOD功能;USB/适配器开关则允许有线充电作为优先选择来节省能源。这些特性共同提供了一个高度集成且灵活的平台,帮助客户加速开发过程,并缩短产品上市时间。
  • 线的实用
    优质
    本设计概述了一种高效的无线充电器电路方案,旨在提高便携设备的充电效率和便利性。通过优化电路结构与材料选择,实现了更高的能量传输效率及更强的兼容性。适合电子产品爱好者和技术研究人员参考使用。 近年来无线充电技术在消费电子产品领域得到了广泛应用。它省去了传统充电方式中的线缆连接,极大地提升了用户的使用体验。本段落将详细探讨一个实用的无线充电器电路设计方案,包括其工作原理、结构组成以及发射和接收电路模块的构建。 无线充电的核心原理基于电磁感应,类似于变压器的工作方式,通过两个线圈之间的耦合来传递能量。系统主要包括发射电路和接收电路两大部分。当电源接入后,交流市电会经过全桥整流转化为直流电,或者直接使用24V直流电为系统供电。接着,经由电源管理模块处理,将直流电转换成高频交流电。 在发射电路中,采用有源晶振作为振荡器产生稳定的正弦波信号。主振电路使用的频率是2MHz的有源晶振,并通过二阶低通滤波器来消除高次谐波,确保输出信号纯净。随后,该信号经过丙类放大电路(由三极管13003及其外围电路组成),放大后的信号驱动线圈和电容组成的并联谐振回路,以辐射能量。 接收电路的设计同样重要。接收线圈的参数如直径、导线尺寸及电感值决定了充电效率。在此例中,接收线圈采用直径7cm、0.5mm粗细的导线,并具有47uH的电感量,在2MHz载波频率下运行。根据并联谐振公式的计算结果,匹配电容约为140pF,确保能有效捕获发射端的能量并将之转换为直流电以给电池充电。 实际应用中,该无线充电平台支持多个设备同时充电,极大提高了便利性。尽管目前还无法实现无需接触的“真”无线充电方式,但多设备同时充电的功能已经显著减少了用户整理和管理线缆的需求。 设计实用的无线充器电路需要考虑能量传输效率、安全性和兼容性等多个方面。通过精确调整发射与接收线圈参数,并优化电源管理模块可以达到高效可靠的解决方案。在设计过程中还需注意电磁兼容性(EMC)及电磁干扰(EMI),确保设备运行时不产生有害辐射并稳定工作于各种环境条件中。此外,电池保护功能如过充和短路防护也是保证用户安全的必要措施。
  • 基于单片机的数字FM线
    优质
    本项目设计并实现了一款基于单片机控制的数字FM无线电接收器,旨在提供高质量的无线音频体验。通过集成高效的解调算法和先进的滤波技术,该设备能够自动搜索电台、调节音量,并具备良好的抗干扰能力,满足日常收听需求。 毕业设计题目是基于单片机的数字FM收音机,要求内容详尽。
  • 线麦克风的音频发射和及其PCB-
    优质
    本项目专注于无线麦克风系统的电路设计方案,包括音频信号的高效发射与精准接收技术,并涵盖PCB布局优化策略。 数字无线麦克风利用了数字芯片的声音加密与身份识别优势,从而避免了传统无线麦克风在相同频率下使用时可能出现的串音问题。本项目设计采用BK952x系列数字芯片制作的无线麦克风,该产品具备高性能音频专用Δ-ΣA/D和D/A处理功能,并采用了1/4πDQPSK调制解调方式实现全数字无线传输。与传统的频率调制不同,在音频传输过程中无需进行压缩或扩展处理,也无需预加重或去加重处理,从而保留了声音的原始品质,确保频响、瞬态和线性等指标表现优秀。 该设计通过极低延迟(2.5毫秒)的编解码器实现了高保真的数字音频传输。无线麦克风的工作原理如下:在发射端,按键开机后单片机对BK9521进行初始化,并设置频率值及发射功率参数;随后,BK9521芯片从麦克风获取声音信号并以48kHz的采样率进行采样,在每1.125ms内形成一帧数据通过射频功放发送出去。在接收端,开机后内置单片机初始化,并设置预设频率值等参数;然后在Phase Lock下进行频率跟踪,接收到的数据如果ID码匹配,则进一步处理并输出音频信号。 该项目设计来源于立创社区分享的资料,仅供网友参考学习之用。
  • SI4735-Radio-ESP32-Touchscreen-Arduino: SI4735 音機
    优质
    本项目基于ESP32和SI4735收音机模块,结合触摸屏界面,提供了一个集成化的软件无线电解决方案,适用于Arduino平台。用户可轻松实现调频广播的接收与播放功能。 该草图使用的是Ricardo PU2CLR开发的SI4735库,在ESP32 WROOM-32板上运行,并配备了一个带有ILI9341控制器的2.8英寸(240 * 320分辨率)触摸屏和一个带开关的旋转编码器。TFT显示部分采用的是ESP_eSPI库,其中包含了ILI9341配置文件。 在使用TFT-eSPI库时可能会遇到一些问题,解决方法是将Setup1_ILI9341.h文件移动到TFT_eSPI库的根目录或顶层目录,并用一个特定版本的User_Setup_Select.h文件替换原来的同名文件。这样可以确保编译器正常工作。 此外,还添加了SI4732的原理图以供参考。软件与硬件完全兼容,在草图第74和75行中可以选择显示方式(垂直或水平)。无线电的状态保存在ESP3存储设备上。
  • 5W 线
    优质
    本项目专注于5W无线充电电路的设计与优化,涵盖发射端和接收端的核心技术、效率提升及兼容性问题,旨在提供高效稳定的无线充电解决方案。 5W无线充电技术是一种现代便捷的设备充电方式,它基于电磁感应原理,在发送端与接收端之间通过空气传递电力而无需物理接触。这种技术尤其适用于智能手机、智能手表和其他小型电子设备,极大地提高了用户的生活便利性。 在无线充电领域中,高通Quick Charge(QC)2.0协议是一个重要的标准,旨在快速且安全地为支持该协议的设备提供电源。5W无线充电电路与高通QC2.0协议相结合后,可以实现比常规无线充电器更快的充电速度,并保持良好的兼容性和效率。 在设计这种类型的无线充电系统时,通常会包含以下几个关键部分: 1. **发送端(Transmitter)**:这是指无线充电器的部分,包括电源适配器、控制器芯片、线圈和功率转换电路。控制器芯片负责管理电力供应并确保遵循高通QC2.0的规范,并将交流电转化为适合于无线传输的高频交流电。 2. **接收端(Receiver)**:这部分通常内置在需要充电的设备中,包含一个接收线圈以及相应的电路来捕获由发送端发出的电磁场能量,并将其转换为直流电以给电池充电。 3. **功率传输线圈(Power Transfer Coil)**:这是无线充电系统的核心组件。通过两个线圈之间的电磁耦合实现能量传递,其设计和布局对充电效率及工作距离有着重要影响。 4. **安全保护机制**:为了确保设备的安全性与可靠性,5W无线充电电路包含过热、过流以及短路保护功能以防止潜在的损害或安全隐患出现。 文档“NVSP0019_SCH_V1.1.pdf”可能是一份详细的电路设计图纸或者规格说明文件,其中包含了布局图示、元器件选择和参数设置等信息。而图片“FmsuDk8Y-1Mb0Ayry2lj2lFU-qYR.png”的内容可能是关于实际的物理构造或某个部分的具体示意图。 学习并理解这个5W无线充电电路方案,有助于深入了解无线充电技术的工作原理,并结合高通QC2.0协议来优化设计以提高效率和用户体验。这对于硬件工程师以及那些希望了解相关技术的人士来说是非常有价值的资源。