Advertisement

Keil5+正点原子STM32F103战舰开发板+硬件SP+Flash W25Q128+EASYFLASH移植至自定义裸机程序

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目基于Keil5和正点原子STM32F103战舰开发板,实现硬件SP接口与W25Q128 Flash的Easyflash库移植,并应用于定制化的裸机程序中。 使用Keil5与正点原子STM32F103战舰开发板结合硬件SP及Flash W25Q128进行Easyflash移植到自己的裸机程序的步骤可以在相关技术博客中找到详细说明。该过程涉及配置和集成多个组件,以实现高效的存储解决方案。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Keil5+STM32F103+SP+Flash W25Q128+EASYFLASH
    优质
    本项目基于Keil5和正点原子STM32F103战舰开发板,实现硬件SP接口与W25Q128 Flash的Easyflash库移植,并应用于定制化的裸机程序中。 使用Keil5与正点原子STM32F103战舰开发板结合硬件SP及Flash W25Q128进行Easyflash移植到自己的裸机程序的步骤可以在相关技术博客中找到详细说明。该过程涉及配置和集成多个组件,以实现高效的存储解决方案。
  • 理图及PCB
    优质
    本资源提供详细的正点原子战舰开发板硬件原理图和PCB设计文件,适用于学习嵌入式系统硬件设计与开发。 正点原子的STM32F103新战舰开发板包含硬件原理图与PCB设计,并且PCB包含了三维元器件封装。
  • STM32F103)上LVGL模
    优质
    本教程详细介绍了如何在STM32F103微控制器(使用正点原子开发板)上成功移植和运行LVGL图形库,为嵌入式系统添加丰富的用户界面功能。 STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,在嵌入式系统设计中被广泛应用。本项目旨在将该微控制器与LVGL图形库结合,用于在搭载于STM32F103上的LCD液晶显示屏上展示丰富的图形界面。 首先需要了解STM32F103的基本配置和硬件接口。这款微控制器具有多个GPIO引脚,其中一些可以被配置为SPI或I2C通信协议以连接至LCD控制器。此外,它还配备了定时器资源来生成所需的时序信号;例如,在本例中可能需要用到一个TIM来控制LCD的背光亮度。 接下来需要熟悉LVGL的工作原理和架构。作为一款开源、高效且功能强大的嵌入式图形库,LVGL特别适合在内存有限的情况下运行于微控制器环境中。它包含了许多预先定义好的图形对象(如按钮、滑块、图表等)以及动画效果;通过这些组件开发者可以轻松构建用户界面。 SquareLine Studio是一款用于创建LVGL项目的图形化工具。该软件提供了一个直观的接口,使得非专业编程人员也能设计出复杂的UI布局。利用此工具,用户可以通过拖放操作添加和配置UI元素,并导出生成代码在STM32上进行编译与执行。 移植LVGL至STM32F103的过程主要包括以下步骤: 1. **硬件配置**:根据LCD模块的技术规格书准确设置STM32的GPIO、SPI或I2C接口及可能需要使用的定时器。 2. **初始化LCD屏幕**:编写代码以设定显示屏分辨率和颜色模式,并确保其能够正确驱动所连接的显示器控制器。 3. **移植LVGL库**:将LVGL源码加入项目中,根据STM32硬件特性进行必要的内存与性能优化调整。 4. **构建显示缓冲区**:由于STM32通常不具备足够的RAM来存储整个LCD屏幕的数据,在Flash中分配一个较大容量的缓冲区域,并通过DMA传输至显示器是必需的操作步骤之一。 5. **事件驱动处理**:LVGL依赖于一种基于事件模型的方法,例如触摸屏输入等交互操作需在STM32中断服务程序内进行相应处理。 6. **运行主循环**:在应用程序中执行LVGL更新周期以确保用户界面能够正确渲染和响应用户的动作。 7. **测试与调试**:借助串口或其他调试工具验证LVGL图形界面对应的显示效果及其对各种操作的反应是否如预期般正常工作。 通过以上步骤,结合SquareLine Studio生成的相关代码示例、配置文件及文档资源,在充分考虑具体硬件特性的前提下进行适当修改和调整后即可实现LVGL在STM32F103上的顺利运行。这种组合方式能够帮助开发者为嵌入式应用创建出更为专业且具有丰富用户体验的图形界面,而理解底层硬件接口、掌握图形库的工作机制以及如何有效优化低资源环境下的代码则是成功完成这一过程的关键要素。
  • STM32F103PCB工.zip
    优质
    本资源包为正点原子STM32F103系列单片机战舰开发板的PCB设计文件,适用于电子工程师和嵌入式开发者进行电路板生产和硬件调试。 正点原子STM32F103_战舰PCB工程包含了详细的硬件设计资料和相关文档,适用于进行嵌入式开发的学习与实践。项目中使用了高性能的STM32微控制器,并配备了丰富的外设资源,适合初学者快速上手并深入研究。
  • CanFestivalSTM32F1
    优质
    本项目旨在将CanFestival库成功移植至战舰STM32F1系列开发板上,实现CAN总线通信功能,为用户提供稳定高效的通讯解决方案。 《CanFestival在战舰STM32F1开发板上的移植实践》 CanFestival是一个开源的CANopen协议栈,在工业自动化领域广泛应用,它为CAN(Controller Area Network)网络提供标准化通信框架。CANopen是基于CAN总线的高层通信协议,遵循CiA发布的DS301规范。STM32F1系列微控制器由意法半导体推出,具备高性能和低成本优势,广泛应用于嵌入式系统设计中。本段落将详细介绍如何在战舰STM32F1开发板上移植CanFestival协议栈,并充分利用其硬件资源实现高效的CANopen网络通信。 为了更好地理解CanFestival的工作原理及其功能模块,在进行移植前我们需要了解以下内容: - CanFestival包括对象字典、PDO(过程数据对象)传输、SDO(服务数据对象)服务、NMT管理及故障诊断等功能,主要负责实现CANopen节点的网络管理和数据交换。 在开始移植工作之前,请确保完成下列准备工作: 1. 硬件环境:战舰STM32F1开发板需配备内置或外接的CAN接口; 2. 软件工具:安装并配置好STM32CubeMX、Keil uVision IDE和相应的CAN驱动库(如HAL库)。 接下来,我们将遵循以下步骤完成移植工作: 1. 使用STM32CubeMX设置开发板上的硬件参数,并生成初始化代码。 2. 从CanFestival官方网站或其他可靠来源获取最新版本的源码文件。 3. 修改CanFestival接口以适应STM32 HAL或LL库的具体要求,特别关注发送和接收函数的部分。 4. 根据项目需求定制对象字典,并定义PDO与SDO配置项。这一步骤将直接影响到CANopen节点的功能及通信行为表现。 5. 将启动代码整合进CanFestival框架内,确保协议栈能够在系统启动时顺利运行。 在移植过程中可能会遇到以下挑战及其解决方案: 1. CAN中断处理:正确设置和管理CAN接口的中断机制以保证数据传输效率; 2. 时钟同步问题:实现NMT主节点功能或引入PDO时间戳等方法来保持所有设备之间的时间一致性; 3. 错误报告与修复策略:当检测到通信故障或其他异常情况时,CanFestival应具备相应的错误处理能力。 完成上述步骤后,在战舰STM32F1开发板上即可构建一个完整的CANopen节点,并与其他同类设备进行有效沟通。通过这种方式,我们能够充分利用CanFestival的功能特性来创建复杂且可靠的自动化控制系统解决方案。
  • STM32指引
    优质
    《正点原子STM32战舰开发指引》是一本专注于STM32微控制器实战编程与项目开发的技术手册,旨在帮助初学者及进阶工程师快速掌握STM32硬件特性及其应用技巧。书中通过详细的实例和讲解,引领读者深入理解并实践STM32系列芯片的开发流程和技术要点,助力开发者构建高效、稳定的嵌入式系统解决方案。 ### 正点原子STM32战舰开发指南关键知识点概览 #### 一、开发板概述 **ALIENTEK战舰STM32开发板**是一款功能全面且资源丰富的嵌入式平台,专为学习STM32微控制器及其实验项目设计。该开发板集成了多种常用接口和外设,并提供了详尽的技术文档和支持,帮助开发者快速上手并进行深入探索。 #### 二、硬件资源 1. **MCU**: 使用高性能的STM32系列微控制器作为核心处理器。 - 特性包括高速运算能力、低功耗特性及广泛的外设支持等。 - STM32系列覆盖了从低端到高端的各种型号,满足不同应用场景的需求。 2. **引出IO口**: 提供丰富的GPIO接口用于连接各种外设或扩展功能。 - GPIO接口通常用于数字信号的输入输出,并支持PWM输出等功能。 3. **USB串口选择接口**: 支持USB转串口通信及标准串口通信,便于数据传输和调试。 - USB转串口模块可以实现与PC机或其他设备的数据交互。 - 串口1主要用于与其他串行设备进行通信。 4. **JTAGSWD**: 支持JTAG调试接口和SWD调试接口,用于程序下载和硬件调试。 - JTAG是一种国际标准测试协议,用于芯片内部测试及在线编程。 - SWD是STM32特有的调试接口,占用更少的引脚资源。 5. **SRAM**: 配备额外的静态随机存取存储器(SRAM),扩展主控芯片内存容量。 - SRAM具有读写速度快、掉电后不丢失数据的特点,适用于需要频繁访问的小型程序。 6. **LCDOLED模块接口**: 支持连接LCD或OLED显示屏,用于显示文字和图像等信息。 - LCD与OLED显示器在功耗及显示效果等方面有所不同,可根据具体应用场景选择合适的显示方式。 7. **复位电路**: 设计有专用的复位电路以确保系统稳定运行。 - 复位电路对于系统的可靠性和稳定性至关重要,能够有效避免因电压波动等问题导致的系统异常。 8. **启动模式设置接口**: 可通过特定跳线设置不同的启动模式(如从Flash、SRAM或内置ROM启动)。 - 不同的启动模式适用于不同开发阶段和应用场景,提供了灵活性。 9. **RS232RS485接口**: 支持两种常见的串行通信标准,适用于长距离通信及多点通信网络。 - RS232用于点对点通信,传输距离较短。 - RS485支持多点通信,传输距离更远。 10. **CANUSB接口**: CAN总线接口支持车载网络通信;USB接口提供高速数据传输功能。 - CAN广泛应用于汽车电子领域,用于实时控制和故障诊断。 - USB则常用于数据传输及供电。 11. **EEPROM**: 集成外部EEPROM存储器,用于保存非易失性数据。 - EEPROM具有非易失性和可电擦除重写的特点,适合保存设置参数等信息。 12. **游戏手柄接口**: 支持连接游戏手柄等输入设备,可用于游戏开发等领域。 - 游戏手柄通常包括多个按键和模拟摇杆,可以实现复杂的游戏控制功能。 13. **SPI FLASH**: 配备SPI接口的闪存芯片,用于存储程序代码或数据。 - SPI FLASH具有读写速度快、可靠性高等优点。 14. **3D加速度传感器**: 内置3轴加速度传感器,可用于姿态检测和运动控制。 - 3D加速度传感器可以测量三维空间内的加速度变化,常用于手势识别及运动追踪等领域。 15. **温湿度传感器接口**: 支持连接温湿度传感器以进行环境监测。 - 温湿度传感器广泛应用于智能家居、农业自动化等领域。 16. **红外接收头**: 支持有线通信功能,可以接收遥控器等设备发送的信号。 - 红外接收头常用于家电控制及安防监控场景。 17. **无线模块接口**: 支持连接Wi-Fi、蓝牙等多种无线通信模块以拓展无线通信能力。 - 无线通信模块使开发板具备远程通讯的能力,适用于物联网应用。 18. **LED**: 配备多个LED指示灯用于状态指示。 - LED可以直观地反映系统的运行状态。 19. **按键**: 配置了多个机械按键以实现用户输入或功能切换。 - 按键是人机交互的基本组件之一。 20. **TPAD电容触摸按键**: 支持电容触控
  • STM32F1V3版 STM32F103ZET6 RT-Thread与STemWin
    优质
    本项目专注于基于STM32F103ZET6微控制器的正点原子STM32F1战舰V3板,深入讲解并实现RT-Thread实时操作系统及STemWin图形库的高效移植。 移植这玩意儿有很多坑,硬件基于4531 320 * 240屏幕。网上基本找不到基于正点原子F1的例程。
  • STM32F103双通道示波器与频谱仪
    优质
    本项目为基于正点原子战舰STM32F103开发板的双通道示波器及频谱仪程序,实现信号采集、显示和分析功能。 正点原子战舰板STM32F103ZET6可以实现双通道数字示波器和频谱仪功能。
  • STM32F103双通道示波器与频谱仪
    优质
    本项目基于正点原子战舰开发板STM32F103系列微控制器,设计并实现了一个功能强大的双通道数字示波器和频谱分析仪软件,适用于电子工程师进行信号测量与分析。 正点原子战舰板STM32F103双通道示波器和频谱仪程序提供了一种灵活且功能强大的工具,适用于各种嵌入式开发场景。该程序能够帮助用户进行信号的实时监测与分析,并支持多种配置选项以满足不同的实验需求。
  • 基于YAFFS文系统
    优质
    本项目详细记录了在正点原子开发板上移植YAFFS文件系统的全过程,涵盖环境搭建、代码修改及调试技巧,为嵌入式开发者提供实用参考。 在开发板上移植NAND Flash文件系统。