Advertisement

学习强化学习,并在 MATLAB 环境中进行开发。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该软件构建了一个专门的游乐场,旨在强化学习(RL),尤其针对那些包含多种复杂设置的场景。 游乐场的核心架构建立在一款移动机器人模型之上,这个模型被称为“扩展非完整双积分器”(ENDI)。 更多关于该模型的详细说明,请参考提供的注释。 整个代码的流程图可以查阅相关资源。 简而言之,代理——通常被称为“控制器”——被连接到环境(即系统),并负责生成动作,其目标是在无限的时间范围内最大限度地降低运行成本,这个成本也常被称为奖励或阶段成本。 该软件包的具体任务是引导机器人完成自动泊车操作。 控制器具备多模态特性,能够与一系列基线进行对比评估,例如传统的停车控制器以及带有和不带有动态模型估计的模型预测控制器。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LearnRL:MATLAB-_MATLAB
    优质
    LearnRL是一款专为MATLAB用户设计的强化学习教育工具包。它提供了丰富的教程和实验环境,帮助用户深入理解和掌握强化学习的核心概念与算法,适用于初学者及进阶研究者。 该软件是一个专为详细学习强化学习(RL)而设计的游乐场,并支持多种设置。其核心基于一个名为“扩展非完整双积分器”(ENDI) 的移动机器人模型。整个代码流程图可以查看相关文档。 在这个系统中,代理(也称为控制器)连接到环境并生成动作以在未来无限的时间内最小化运行成本(即奖励或阶段成本)。该软件包的具体目标是实现机器人的停放功能。其中的控制器具有多模态特性,能够与多种基线进行对比测试,包括标称停车控制器、带有和不带动态模型估计的预测控制等方法。
  • Baseline项目:Gym玩Atari游戏
    优质
    本项目运用强化学习技术,专注于开发和测试各种算法在经典Atari游戏中达到高分的能力。通过OpenAI Gym环境,我们探索并实现多种Baseline模型,以期优化智能体的表现。 在gym环境中集成的Atari游戏可用于DQN训练,但操作不够方便。因此,在baseline中专门对gym环境进行了重写以更好地适应DQN的训练需求。从源码可以看出,只需重写两个函数:`reset()`和`step()`;由于没有重写`render()`函数,所以画面未被显示出来。 1. `NoopResetEnv()` 函数的功能是,在前30帧中不做任何操作以跳过初始状态。这有助于增加初始画面的随机性,避免陷入过拟合。 ```python class NoopResetEnv(gym.Wrapper): def __init__(self, env, noop_max=30): super(NoopResetEnv, self).__init__(env) # 初始化代码省略 ``` 这段初始化代码中,`super()`函数用于调用父类的构造方法,并设置最大空操作帧数为30。实际实现细节可以根据具体需求进行调整。
  • CartPole-v0 下实现算法
    优质
    本项目在CartPole-v0环境中实现了多种强化学习算法,通过模拟小车平衡杆的动作控制,验证了不同策略的有效性与应用场景。 Cart Pole 是 OpenAI 的 gym 模拟器里一个相对简单的小游戏。游戏中有一个小车,上面有一根杆子。玩家需要控制小车左右移动以保持杆子竖直状态。如果杆子倾斜角度超过 15° 或者小车移出限定范围(即从中间向两边各超出 4.8 个单位长度),则游戏结束。具体设计细节请参见相关文档文件。
  • 倒立摆__Matlab程序.zip_ pendulum__matlab_matlab
    优质
    这段资料包含了一个基于Matlab编写的强化学习算法应用于倒立摆(pendulum)控制问题的实现代码,适用于研究和教学目的。 用MATLAB语言编写的强化学习倒立摆程序可以在MATLAB上运行。
  • 聚合聚类:利用聚类
    优质
    本研究提出了一种基于强化学习的新颖聚类算法——增强聚合聚类,该方法能够有效提高数据聚类的质量和效率。通过智能探索与优化策略,系统地解决了传统聚类方法中参数难以调优、对初始条件敏感等问题。 为了克服传统聚类方法中的贪婪性问题,我们提出了一种基于强化学习的解决方案来改进凝聚聚类技术。这种方法通过将聚集聚类过程建模为马尔可夫决策过程(MDP)来进行优化,从而能够学习到更加非贪婪性的合并策略。 层次聚类通常采用一种“自下而上”的方法,在这种情况下每个观测值开始时都在单独的簇中,并随着层级上升逐渐进行合并操作。由于聚集聚类本质上是一个顺序决策问题——早期做出的选择会影响后期的结果,传统的链接标准无法通过简单地评估当前阶段集群间的相似度来解决问题。 因此,我们将聚类过程建模为马尔可夫决策过程(MDP),并利用强化学习技术对其进行求解。代理需要学会非贪婪的合并策略,以选择每个合并操作从而获得长期的优化奖励。具体来说,状态被定义为当前簇特征表示;动作则对应于将集群i和j进行合并。 我们采用Q学习算法来计算给定状态下执行特定行动的价值,并在训练阶段使用图像的真实标签作为反馈信号来评估代理行为的质量。而在测试过程中,则会尝试不同的数据集以验证该模型的有效性和泛化能力。
  • (Q)示例:利用迷宫展示Q算法-MATLAB
    优质
    本项目通过MATLAB实现Q学习算法在迷宫环境中的应用,展示了如何利用强化学习方法使智能体学会最优路径选择策略。 此代码使用迷宫示例演示了强化学习(Q-learning)算法的应用场景,在该场景下机器人必须通过向左、向右、向上或向下移动来找到目的地。在每一步中,根据机器人的动作结果,它会得到反馈以判断其行为是否正确,并重复这一过程直到到达目标位置。然后整个流程重新开始,以便验证所学内容并优化路径选择。 该示例适用于需要边走边学习的情境(即没有预先训练的数据),可以应用于游戏中的AI算法提升、与其他人类玩家竞争等场景中。在较小的迷宫环境中,Q-learning能够快速收敛;而在较大的环境里,则可能需要更多时间来达到稳定状态。通过修改代码细节,可以使该算法更加高效地运行。 四个相关的m文件包括: - QLearning_Maze_Walk.m:展示如何使用选定的迷宫进行Q-learning演示。 - Random_Maze_Walk.m:用来和随机选择路径的方法做比较参考。
  • WinFormMono
    优质
    本项目探讨并实践了使用WinForms技术在Mono环境下进行应用程序开发的可能性与挑战,旨在评估其跨平台兼容性及性能表现。 在Mono环境下进行WinForm开发可以在Windows操作系统和Linux操作系统下运行。需要提前下载并部署Mono环境。
  • AdHoc_Routing-Master_路由的应用_路由
    优质
    本项目探索了强化学习技术在Ad Hoc网络中路由协议的应用,通过智能算法优化数据包传输路径,提升网络效率与稳定性。 在无线自组织网络(Ad Hoc Network)中,路由协议是连接各个节点并确保数据有效传输的关键技术。adhoc_routing-master项目专注于利用强化学习(Reinforcement Learning, RL)来优化这些路由协议,以适应不断变化的网络环境。强化学习是一种机器学习方法,通过与环境的交互学习最优策略,其核心思想是通过奖励和惩罚机制让智能体逐步改进决策。 该项目的核心在于将强化学习应用于路由选择策略,从而提高网络性能。在传统的路由协议中,如AODV、DSDV或DSR,路由决策通常基于静态规则或预定义的路径。然而,在Ad Hoc网络中,由于节点的移动性、网络拓扑的动态变化以及资源的有限性,这些传统方法可能无法达到最佳效果。 强化学习路由(RL Routing)的优势在于它能够自我适应,并且无需预先知道网络状态或全局信息。智能体会根据当前状态选择动作(即选择下一跳节点),并依据接收到的奖励(例如成功的数据传输或低延迟)来调整其策略。这种动态调整可以改善网络的整体吞吐量、减少延迟、提高包送达率和降低能量消耗。 具体到adhoc_routing-master项目,它可能包含以下组件: 1. **环境模拟器**:用于模拟Ad Hoc网络环境,包括节点的随机移动、链路状态的变化以及数据包的传输。 2. **智能体**:代表网络中的每个节点,负责学习和执行路由决策。智能体会使用某种强化学习算法,如Q-learning、SARSA或Deep Q-Network (DQN)。 3. **动作空间**:定义了可供智能体选择的动作集,例如向特定邻居节点发送数据包或维持当前路由策略。 4. **状态表示**:反映智能体观察到的网络状态,可能包括节点位置、邻居列表、链接质量以及电池电量等信息。 5. **奖励函数**:用于衡量智能体的行为效果,如成功传输数据包获得正向激励,而丢包或高延迟则受到负向反馈。 6. **学习策略**:描述了智能体如何更新其决策机制的规则,比如ε-greedy策略,在随机探索和贪婪选择之间找到平衡点。 7. **实验评估**:通过模拟实验来评价强化学习路由的效果,并与传统路由协议进行比较分析它在网络不同条件下的表现情况。 实际应用中,RL路由需要考虑的问题包括算法收敛速度、稳定性以及对网络变化的响应效率。adhoc_routing-master项目可能研究这些问题并尝试优化相关算法以解决这些挑战。通过不断的学习和改进,这种技术有望提升Ad Hoc网络的整体性能与可靠性,并为未来移动通信及物联网网络的发展提供重要的技术支持。
  • 深度MATLAB案例程序_CreateAgent_
    优质
    本资源提供深度强化学习在MATLAB中的应用实例,重点介绍使用CreateAgent函数创建智能体的过程,适合初学者快速入门。 深度强化学习(Deep Reinforcement Learning, DRL)是人工智能领域的重要分支之一,它结合了机器学习的深度神经网络与决策制定过程中的强化学习方法。在这个MATLAB案例程序中,你将有机会深入了解并实践如何利用DRL解决实际问题。 在DRL中,核心机制在于智能体通过与环境互动来获取最优策略。借助于深度学习技术,它可以处理高维度的状态空间,使智能体能够从复杂环境中进行有效学习。作为强大的数学计算和建模平台,MATLAB提供了丰富的工具箱支持深度学习及强化学习算法的实现。 1. **环境构建**:在DRL中,环境是指与之互动的系统。MATLAB包括多种预定义模型如Atari游戏、连续控制任务等,并允许用户根据特定需求自定义环境。智能体会接收状态信息并依据其策略执行动作,随后从环境中得到奖励或惩罚以指导学习过程。 2. **算法训练**:常见的DRL算法有Deep Q-Network (DQN)、Actor-Critic方法(如Proximal Policy Optimization, PPO)、Deep Deterministic Policy Gradient (DDPG) 和 Twin Delayed Deep Deterministic Policy Gradient (TD3)等。MATLAB提供了这些算法的实现,方便用户调整参数并进行模型训练。 3. **算法分析**:在训练过程中需要监控和评估性能指标如学习曲线、平均奖励及策略稳定性等。通过MATLAB提供的可视化工具可以更好地理解不同阶段的表现,并据此优化模型。 4. **文件结构介绍** - `Content_Types`.xml 文件定义了压缩包中各文件类型的默认扩展名。 - mathml 可能包含用于描述数学表达式的MathML格式的文档。 - media 存储与案例相关的图像、音频或视频数据。 - metadata 提供关于案例的详细信息,包括元数据文件。 - matlab 目录包含了所有MATLAB代码文件(如.m 文件),实现DRL算法和环境定义等功能。 - _rels 关系文件描述了压缩包内各文件之间的关联。 通过这个案例程序的学习,你可以掌握设置与运行DRL实验的方法、理解常见算法的工作原理,并在实践中提升强化学习建模及调试技能。此外,这也将帮助你深入理解如何设计有效的环境和奖励函数以及优化智能体策略,在人工智能和机器学习领域中进一步提高专业水平。
  • Matlab代码
    优质
    本代码库包含了基于Matlab实现的各种强化学习算法,适用于初学者和研究人员进行模型训练与策略优化。 强化学习算法用于网络资源分配,目的是最大化频谱利用效率。