Advertisement

LLC.rar_3KW LLC同步整流_lld_半桥

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源为LLC同步整流电路设计,适用于3KW功率等级下的半桥结构,提供高效可靠的电力转换解决方案。 具有同步整流的半桥LLC电路适合初学者学习LLC控制的基本理念。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LLC.rar_3KW LLC_lld_
    优质
    本资源为LLC同步整流电路设计,适用于3KW功率等级下的半桥结构,提供高效可靠的电力转换解决方案。 具有同步整流的半桥LLC电路适合初学者学习LLC控制的基本理念。
  • LLCDSP程序代码.rar_LLC DSP程序__llc程序_dsp llc
    优质
    本资源包含半桥LLC同步整流的DSP控制程序代码,适用于电力电子变换器设计与研究,便于开发人员学习和应用。 该文件是由CCS6.0编写的关于半桥LLC同步整流的DSP程序。
  • 如何在谐振LLC电路中应用
    优质
    本文探讨了在谐振LLC半桥拓扑中使用同步整流器的方法与优势,分析了其工作原理及设计考虑因素。 文章主要介绍了如何在谐振LLC半桥电路中实施同步整流器。
  • LLC.zip - LLC仿真的Simulink模型(LLC仿真, LLC)
    优质
    本资源提供了一个基于Simulink的LLC半桥变换器仿真模型(LLC.zip),适用于研究与分析LLC谐振转换器的工作特性。 我按照经典半桥LLC搭建了一个Simulink仿真平台,主要目的是验证LLC的工作特性。
  • PSIMLLC仿真
    优质
    本项目专注于PSIM软件中半桥LLC谐振变换器的仿真研究。通过构建精确模型与参数优化,旨在验证设计理论并探索其在高频开关电源中的应用潜力。 PSIM半桥仿真涉及使用PSIM软件进行电路设计与分析,特别是针对半桥拓扑结构的模拟实验。通过该过程可以评估不同参数对系统性能的影响,并优化设计方案以达到预期的目标效果。
  • LLC谐振变器的策略研究
    优质
    本研究聚焦于LLC谐振变流器的优化,着重探讨其在不同条件下的同步整流技术应用与性能提升策略。通过理论分析和实验验证,提出有效提高效率及减小损耗的新方法。 LLC谐振变流器同步整流策略的研究
  • LLC谐振变换器
    优质
    半桥式LLC谐振变换器是一种高效的直流-交流或直流-直流电力转换电路,通过调整工作频率实现零电压开关条件,显著减少开关损耗并提高系统效率。 电力电子软开关的关键资料非常珍贵。
  • LLC谐振DC/DC变换器
    优质
    简介:半桥LLC谐振DC/DC变换器是一种高效的电力电子电路,通过利用谐振原理减少开关损耗,广泛应用于各种电源系统中。 半桥LLC谐振型直流变换器采用PLECS 4.5.6软件版本。
  • LLC谐振的运作原理
    优质
    LLC谐振半桥电路是一种高效的软开关技术,在DC-DC变换器中广泛应用。其通过调节工作频率实现零电压开关,减少损耗,提高效率和可靠性。 随着开关电源技术的发展,软开关技术得到了广泛的应用和发展,并且已经研究出许多高效率的电路拓扑结构,主要包括谐振型软开关拓扑和PWM型(脉宽调制)软开关拓扑。近年来,半导体器件制造技术的进步使得功率管的导通电阻、寄生电容以及反向恢复时间都显著减小了,这为谐振变换器的发展提供了新的机遇。 对于LLC谐振变换器而言,在设计合理的情况下可以实现全负载范围内的高效运行,并且特别适合于轻载条件下的高效率要求。这种变换器起源于不对称半桥电路,但是采用了调频型(PFM)控制方式而非传统的PWM控制,这使得它能够在更宽的负载范围内保持高效的性能。 ### LLC谐振半桥工作原理详解 #### 一、LLC谐振变换器的基本概念与原理 ##### 1. 背景与意义 随着现代电力电子技术的发展和开关电源技术的进步,软开关技术成为了提高电源转换效率的关键手段之一。在众多的软开关技术中,LLC谐振变换器因其独特的性能优势而备受关注。它能够实现全负载范围内的高效运行,并且特别适合于轻载条件下的高效率要求。 ##### 2. LLC谐振变换器概述 LLC谐振变换器是一种利用特定电路结构来实现软开关操作的电源转换技术,它基于不对称半桥电路发展而来,但采用了调频型(PFM)控制方式而不是传统的脉宽调制(PWM)控制。这种控制方法使得该变换器能够在较宽负载范围内保持高效运行,并且可以通过调节频率来调整输出电压。 ##### 3. 工作原理 LLC谐振变换器的核心在于其独特的谐振网络,由一个激磁电感(Lm)、变压器漏感(Ls),以及一个谐振电容(Cs)组成。在不同的工作阶段中,这些元件相互作用以实现软开关操作,从而降低开关损耗并提高整体效率。 - 在t1到t2时间段内:当S2关闭后,通过S1的寄生电容放电至零电压,之后体二极管导通;此期间Lm上的电压被输出电压钳位。 - t2至t3阶段:在S1处于零电压条件下开启时,变压器原边承受正向电压。此时D1继续导通而S2和D2截止;在此过程中仅有Ls与Cs参与谐振。 - 在t3到t4时间段内:当S1保持导通状态时,D1与D2关闭,副边电路脱离主回路连接;此阶段中激磁电感、漏感及谐振电容一起工作于谐振模式下。由于实际应用中的Lm远大于Ls,因此激磁电流和谐振电流可以视为保持不变。 - t4至t5期间:当S1关闭后,通过S2的寄生电容放电直至电压降为零;随后体二极管导通并使D2开始工作。此时变压器原边承受反向电压且仅有Ls与Cs参与谐振。 - 在t6到t7时间段内:当S2处于零电压条件下开启时,副边电路脱离主回路连接;此阶段中激磁电感、漏感及谐振电容一起工作于谐振模式下。同样地由于实际应用中的Lm远大于Ls,因此激磁电流和谐振电流可以视为保持不变。 #### 二、LLC谐振腔元件的设计原则 ##### 1. 匝比 匝比的计算对于确保正确的电压变换比例至关重要。根据给定公式: \[ n = \frac{V_{\text{out}} - V_{\text{ref}}}{V_{\text{in}} - V_{\text{ref}}} \] 其中,\( V_{\text{out}} \) 是输出电压,\( V_{\text{in}} \) 是输入电压,而 \( V_{\text{ref}} \) 通常是变压器的中心抽头电压。 ##### 2. 谐振电容器Cr 谐振电容的选择直接影响到谐振频率和整体效率。计算公式如下: \[ C_r = \frac{4(V_{\text{out,max}} - V_{\text{ref}})}{(V_{\text{out,min}} - V_{\text{ref}})^2} \cdot \frac{1}{n^2 f_c I_o} \] 其中,\( V_{\text{out,max}} \) 和 \( V_{\text{out,min}} \) 分别表示输出电压的最大值和最小值;\( f_c \) 是谐振频率,而 \( I_o \) 则
  • LLC变换器PSIM仿真模型.zip_LLC_psim_llc_visuial_studio_仿真
    优质
    本资源提供了一种基于PSIM软件的半桥式LLC变换器仿真模型。用户可以下载并使用该模型进行电路设计与性能评估,适用于电力电子领域的研究和教学。 使用Visual Studio编译生成动态链接库,并将其嵌入Psim进行仿真。该仿真模型提供了半桥谐振变换器的数模混合仿真功能,通过动态链接库实现了PWM分配。