Advertisement

STM32双串口中断传输

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本项目介绍如何在STM32微控制器上配置和使用两个独立的串行通信接口(USART)进行中断模式下的数据传输。通过设置正确的寄存器值与编写相应的中断服务例程,实现高效的数据交换功能。 使用STM32F103RC芯片并通过中断传输方式实现串口1发送数据到串口2接收的功能,在数据量不大的情况下可以确保及时性,并通过串口2调试助手显示接收到的数据。此外,当串口2接收到数据后会立即在调试助手上进行展示。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32
    优质
    本项目介绍如何在STM32微控制器上配置和使用两个独立的串行通信接口(USART)进行中断模式下的数据传输。通过设置正确的寄存器值与编写相应的中断服务例程,实现高效的数据交换功能。 使用STM32F103RC芯片并通过中断传输方式实现串口1发送数据到串口2接收的功能,在数据量不大的情况下可以确保及时性,并通过串口2调试助手显示接收到的数据。此外,当串口2接收到数据后会立即在调试助手上进行展示。
  • STM32
    优质
    本文介绍了如何在STM32微控制器上设置和使用串口通信中的中断功能,包括配置步骤、代码实现及注意事项。适合初学者快速掌握STM32串口中断编程技巧。 STM32串口中断是该微控制器的一种高效数据传输方式,尤其适用于需要实时处理数据的应用场景。在STM32中,串口(USART或UART)支持中断模式,可以显著提高系统的响应速度和效率,并避免了连续轮询带来的CPU资源浪费。 当串口接收到新数据时,内部硬件中断控制器会触发一个中断请求;CPU接到这个请求后暂停当前任务,执行相应的中断服务子程序来处理接收的数据。在该子程序中,开发者可以读取并处理接收缓冲区中的数据。 发送1090字节和1809字节的测试表明了串口通信的批量传输能力。STM32串口通常具有双缓冲机制以同时处理多个字符,提高吞吐量。然而,在传输大量数据时(如1809字节)可能会丢失最后一个字节,这可能是由于缓冲区溢出或中断服务子程序延迟引起的。为避免这种情况,应及时清空接收缓冲区或者调整串口配置增加缓冲大小。 STM32F103ZE是该系列的一种型号,配备多个串口接口如USART1、USART2等,并可设置这些接口的中断模式用于数据接收。具体步骤如下: - **启用时钟**:在RCC寄存器中开启相应串口的时钟。 - **配置参数**:将串口工作模式设为中断接收,选择适当的波特率、数据位数、停止位和校验方式等。 - **设置中断优先级**:通过NVIC使能相应的接收中断,并设定其优先级。 - **清除标志**:在启动接收前清空接收完成的标志以确保新数据到达时可以触发中断请求。 - **编写服务子程序**:编写用于处理接收到的数据的服务函数,从中读取并处理缓冲区内的信息。 - **开启中断功能**:启用串口的接收中断以便于当有新的数据到来时执行相应的中断服务。 在实际应用中,还需考虑流量控制如RTSCTS或XONXOFF机制以防止溢出。同时,在多任务环境中要注意确保多个并发访问串口的任务同步性。 总体而言,STM32串口中断是一种强大的通信方式;通过优化配置和改进中断处理可以实现高效稳定的数据传输,并解决可能出现的丢包问题。
  • STM321和2的并发
    优质
    本文探讨了在STM32微控制器上实现串口1和串口2的并发中断处理方法,旨在优化多任务通信环境下的数据接收与发送效率。 STM32F103系列单片机可以同时使用串口1和串口2进行中断输入输出。其中,串口1配置为PA9和PA10引脚,而串口2则使用PA2和PA3引脚。
  • STM32CUBEDMA互相
    优质
    本文档详细介绍如何在STM32微控制器上配置和使用两个串行通信接口通过DMA方式进行数据互传的技术细节与实现步骤。 STM32CUBE是由STMicroelectronics公司推出的一款集成开发环境,专为STM32系列微控制器提供全面的软件支持,包括HAL(硬件抽象层)库、LL(低级)库以及中间件等组件。本段落将重点介绍使用STM32CUBE实现双串口DMA互透传的应用实践。 串行通信在嵌入式系统中是一种常见的数据交换方式,主要用于设备之间的短距离通讯。通过STM32CUBE中的HAL库,我们可以方便地配置和管理串口参数如波特率、数据位数、停止位及校验位等。然而,在需要连续且高效接收不定长度的数据时,传统的中断或轮询模式表现不佳,因为它们需频繁检查接收状态并处理相关事务,导致效率低下。 DMA技术允许外设直接与内存交换数据而无需CPU干预,从而减轻了CPU的负担,并提升了传输速度。在STM32中,串口可以被配置为使用DMA进行接收和发送操作,在完成一次数据传输后会触发中断通知CPU进一步处理相关事务。 在一个双串口DMA互透传的应用场景下,我们假设一台设备通过UART1发送数据到STM32C8,并由其通过UART2接收这些信息;然后STM32再利用UART1将接收到的数据转发出去。为了实现这一功能,我们需要执行以下步骤: 1. 初始化两个串口:配置波特率、流控和中断优先级等参数,并启用串口的DMA接收与发送模式。 2. 配置DMA通道:选择合适的通道并设置内存地址、外设地址、传输大小及数据宽度。对于串口接收,应当将DMA配置为半自动模式,在每次接收到一个完整数据块后触发中断信号。 3. 编写中断服务程序(ISR):当发生DMA传输完成时,CPU会响应相应的中断请求;此时可以在ISR中处理接收到的数据,并检查其完整性然后将其放入发送队列等待后续操作。 4. 启动DMA传输过程:对于数据发送任务,可以通过调用HAL_UART_Transmit_DMA()函数来启动;而对于接收,则通过HAL_UART_Receive_DMA()函数进行控制。 此外,在实际项目开发过程中还需要考虑其他因素如串口波特率同步、确保数据格式一致性以及定义明确的数据包头尾标识符等。为了保证传输的准确性,对DMA和串口配置进行全面测试与调试也是必不可少的一部分工作内容。 总之,利用STM32CUBE实现双串口DMA互透传是一项实用的技术方案,能够显著提升串行通信效率及可靠性,在处理大规模数据时尤其有效。通过深入理解并掌握HAL库以及DMA机制的应用技巧,开发人员可以构建出高效且稳定的通讯系统解决方案。
  • STM8S105在模式下进行数据
    优质
    本项目探讨了如何在STM8S105微控制器中设置并利用中断实现高效的串行通信数据传输。通过配置USART外设,实现了低延迟、高可靠性的异步通信机制,适用于需要实时数据交换的应用场景。 使用STM8S系列库文件修改例程,在中断方式下接收UART2的数据。一组数据以回车换行结尾,接收到一组完整数据后将其原样发送回去。
  • USART结合DMA与IDLE(基于GD32F103)
    优质
    本项目介绍在GD32F103微控制器上通过配置USART接口使用DMA进行数据传输,并利用IDLE中断处理通信空闲状态,实现高效稳定的串行通讯。 USART串口通信接口在嵌入式系统中非常常见,尤其是在GD32F103这样的微控制器上。本段落将详细介绍这三个技术及其在该芯片上的实现方法。 首先,USART是一种用于设备间数据交换的通用同步/异步收发传输器。它支持全双工模式,在发送和接收过程中可以同时进行操作。配置USART时需要设定波特率、数据位数、停止位以及校验位等参数以确保与其它设备之间的通信协议一致。通常,我们还会设置TX空闲中断和RX完成中断来通知CPU特定事件的发生。 其次,DMA(直接存储器访问)是一种高效的数据传输机制,在GD32F103中使用它可以减轻CPU的负担,并且在大量数据交换时尤其有效。配置USART DMA需要选择合适的通道、设定传输方向及长度等参数,同时还需要启用相应的中断以处理传输完成后的事件。 另外,IDLE空闲中断是当USART检测到输入线路长时间无活动状态(即进入空闲模式)时触发的中断功能,在这种情况下可以执行特定的操作或者检查通信线路是否静默。在GD32F103上配置此功能有助于提高系统的响应性和能效。 结合以上三个技术,我们可以构建一个高效智能的串行通信系统。首先创建一个针对GD32F103的Keil项目,并添加必要的库文件和头文件;然后初始化USART、DMA和中断系统并分配GPIO引脚;设置USART参数以及启用IDLE中断功能;配置DMA通道及传输属性,连接到USART DMA请求;编写处理发送完成、接收完成及IDLE中断事件的服务程序。 在实际应用中还需要考虑错误处理、动态调整波特率等高级特性。正确链接库函数和设置编译选项确保代码能够顺利地下载并运行于GD32F103芯片上是至关重要的步骤之一。 通过掌握USART串口通信接口、DMA搬运以及IDLE空闲中断的原理与配置方法,开发者可以为基于GD32F103微控制器设计出高效可靠的串行通信方案以满足各种应用场景的需求。在工程实践中应用这些技术将显著提升系统的性能和用户体验。
  • STM32接收处理
    优质
    本篇介绍如何在STM32微控制器中配置和使用串口接收中断功能,以实现高效的数据通信。通过设置USART NVIC、编写中断服务例程等步骤,详解其工作原理与实践应用。 STM32的串口接收中断功能很好用,可以连续接收一连串字符,比示例程序更实用。
  • STM32超时接收
    优质
    本文章介绍了如何在STM32微控制器中设置和使用串口超时中断功能来实现稳定的数据接收机制,提高通信可靠性。 STM32实现中断超时接收不定长度的数据,并将其写入Flash存储器后读出并返回。
  • STM32DMA与空闲
    优质
    本文介绍了如何在STM32微控制器上使用串行通信接口(USART)结合DMA传输和空闲中断技术,实现高效的数据收发操作。通过这种方式可以减少CPU负载,并简化数据处理流程。 STM32通过串口的DMA数据传输和空闲中断可以提高MCU的利用率。
  • STM32自定义数据.rar
    优质
    本资源为STM32微控制器实现自定义串口通信的数据传输代码及配置方法,适用于需要进行灵活串口通讯协议开发的应用场景。 HAL库的串口接收与发送代码可以分为两个部分:一个用于多数据发送,另一个用于多数据接收。自定义发送的数据在一段代码中实现,而在另一段代码中则负责分开接收这些自定义串口收发的数据。