Advertisement

风力发电装置的制动和偏航系统,其智能控制研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该研究致力于风力发电装置的刹车系统以及偏航系统的智能化控制技术。具体而言,这是一篇研究生论文,深入探讨了如何通过智能控制提升风力发电装置的性能和可靠性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 机刹车与
    优质
    本研究聚焦于提升风力发电效率及安全性,通过开发智能控制系统优化风机刹车与偏航性能,旨在实现更高效的能源利用和维护。 风力发电装置刹车系统及偏航系统的智能控制研究是研究生论文的主题。该课题主要探讨如何通过智能化技术提高风力发电机的运行效率与安全性,具体涉及对刹车系统和偏航系统的优化设计与控制策略的研究。通过对这些关键子系统的深入分析,旨在实现更加可靠、高效的风电设备管理方案,为可再生能源领域的发展提供技术支持。
  • 基于PLC机组毕业设计.doc
    优质
    本论文主要探讨了在风力发电领域中采用可编程逻辑控制器(PLC)技术实现风电机组偏航控制系统的设计与优化,旨在提高风电效率和稳定性。 基于PLC的风力发电机偏航控制系统设计毕业设计论文主要探讨了如何利用可编程逻辑控制器(PLC)来实现对风力发电机组偏航系统的有效控制。该研究详细分析了现有技术中的不足,并提出了一种新的解决方案,旨在提高风力发电机的工作效率和稳定性。通过理论与实践相结合的方式,本段落深入讨论了控制系统的设计思路、硬件选型以及软件编程等方面的内容,为同类项目的开发提供了有价值的参考依据。 论文首先介绍了偏航控制系统的背景及研究意义,随后详细阐述了PLC在该领域应用的优势,并对整个系统的工作原理进行了说明。此外,文中还包含了实验数据和结果分析部分,用以验证所设计控制系统的效果与性能指标。最后,在结论章节中总结了研究成果并指出了未来可能的研究方向。 此论文对于从事风电技术开发及相关专业的学生及研究人员来说具有较高的参考价值和应用前景。
  • 双馈最大追踪
    优质
    本研究聚焦于双馈风力发电系统中实现最大风能捕获策略的控制算法设计与优化,旨在提升风能转换效率和系统稳定性。 本段落基于对风力机运行特性的分析,建立了风力机的简易数学模型,并在风速变化时实时调节发电机转速和转矩,以实现最大风能追踪控制。研究重点在于双馈型风力发电系统的优化性能提升。
  • 双馈论文.zip
    优质
    本研究论文深入探讨了双馈风力发电系统中的电力电子控制技术,分析并优化了该系统在不同工况下的运行性能和效率。 电力电子论文-双馈风力发电系统控制.zip包含了关于双馈风力发电系统的深入研究和分析。文档内容聚焦于该领域的技术细节与控制系统优化策略,适合相关领域研究人员和技术人员参考学习。
  • 基于PLC技术MCGS
    优质
    本研究探讨了将PLC技术和MCGS组态软件应用于风力发电控制系统中的方法与效果,旨在提升系统智能化水平和运行效率。 基于PLC技术的MCGS风力发电智能控制系统研究以及基于PLC的MCGS风力发电控制系统的优化研究,探讨了MCGS、PLC控制、风力发电及监测与控制等方面的内容。
  • 机组变桨仿真
    优质
    本研究聚焦于风力发电机组的变桨控制系统,通过建立详细的数学模型和仿真环境,探讨了该系统的动态响应、控制策略及优化方法,以提高风电机组性能与稳定性。 在MATLAB中可以创建风机仿真模型,包括双馈感应发电机(DFIG)和直驱永磁同步发电机(PMSG)。其中,DFIG常用于大型风力发电系统,并因其高效的性能及灵活的控制方式而被广泛采用。该类型的风机通过变频器与电网相连,在不同风速下仍能保持高效运行状态。在MATLAB中构建DFIG模型时,需要涵盖机械部分、发电机、变频器以及控制系统等。 相比之下,PMSG具有更高的可靠性和更低的维护需求,因为它不需要传统的齿轮箱组件。这种风机的核心是永磁同步电机直接连接到发电机上,并通常与逆变器一起使用以实现高效的功率转换。在MATLAB中创建PMSG模型时,则需要包括机械特性、电气特性和控制策略等元素。 对于1.5兆瓦的风力发电系统,不论是DFIG还是PMSG,在MATLAB中的模拟都涵盖风机的功率曲线、不同风速下的功率输出以及系统的动态响应等方面。此外,还可能涉及具体控制算法的应用,例如最大功率点追踪(MPPT)、功率因数调节及故障检测等技术手段,以确保风机在实际运行中达到最佳性能水平。
  • 2011年机组主
    优质
    2011年的风力发电机组主动偏航系统介绍了该年度在风电机组中采用的一种智能化调整叶片朝向的技术,旨在提高风能利用效率并减少机械磨损。 风电机组的高效稳定运行依赖于先进的控制技术,其中主动偏航控制系统是水平轴风电机组的关键组成部分之一。为了应对不确定性的风向对风机功率的影响,笔者设计了一种模糊控制器来确保风机能够精确地跟踪风向,并实现最大捕获风能的目标。 此外,在避免电缆缠绕和保护强风天气下工作的风机方面,本段落提出了解缆以及90°侧风的设计思路并提供了具体的控制流程图。结果显示:这种主动偏航系统有助于使风力发电机平稳可靠运行,从而高效利用风能,并满足了对偏航系统的性能要求。
  • 关于永磁直驱最大追踪
    优质
    本研究聚焦于优化永磁直驱风力发电系统中的最大风能追踪控制策略,旨在提高风电机组在不同风速下的能量捕获效率和稳定性。 本段落针对直驱式永磁同步风力发电控制系统,在分析风力机基本特性后建立了其基础模型,并结合了永磁同步电机矢量控制技术,对最大风能跟踪控制进行了研究。
  • 机中作用与原理
    优质
    本文章主要介绍风力发电系统中的偏航制动器的功能及其工作原理。通过解析其作用机制,揭示如何有效调节风轮与风向的关系以实现最优发电效率。 偏航制动器的作用与原理 工作原理:在采用齿轮驱动的偏航系统中,为了防止因风向变化导致的振荡引起偏航齿轮产生交变载荷,需使用偏航制动器来吸收微小自由转动引起的振动,并避免轮齿过早损坏。当液压作用于制动器时,会使得摩擦片夹紧旋转部分并使其停止。 检查与更换摩擦片 摩擦片由钢板和特定的磨损材料制成,平均总厚度为18mm。如果任一摩擦片厚度低于12mm,则表明已磨损6mm,此时应立即更换新的摩擦片。根据制动器的具体类型(例如ANTEC 制动器或SIME 制动器),所需替换的摩擦片尺寸可能会有所不同,请按照具体型号进行匹配与更换。