本论文探讨了协作同步技术在分布式微电网控制系统中的应用,分析了其对提升系统稳定性和效率的作用,并提出了一套优化方案。
This book delves into the distributed control of microgrids, which are small-scale power networks designed to supply local loads within limited geographical areas. Microgrids find applications in various settings such as remote villages, hospitals, universities and educational institutions, police stations, commercial and residential buildings, shipboard power systems, military bases, and ships.
The concept of a microgrid offers the potential for reliable and predictable operation of renewable energy generators through local control and support for power quality. Additionally, it allows for scalable addition of new generation sources and loads. Traditionally, microgrids have been integrated into conventional AC distribution networks to supply AC loads. These types of microgrids are referred to as AC microgrids.
Recently, DC microgrids have garnered significant attention due to their advantages. Unlike AC microgrids, DC microgrids utilize a DC electrical infrastructure for power delivery and management. This book applies techniques from the distributed cooperative control of multi-agent dynamical systems to address synchronization, power sharing, and load balancing issues in both AC and DC electric power microgrids.
Distributed networks of coupled dynamical systems have attracted considerable attention over the years due to their relevance across various fields such as biological and social systems, physics, chemistry, and computer science.