Advertisement

深度学习工具箱:轻松实现包含K折交叉验证的卷积神经网络(CNN)-MATLAB开发

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目提供了一个便捷的MATLAB工具箱,用于构建和训练带有K折交叉验证机制的卷积神经网络(CNN),助力科研与工程应用中的深度学习任务。 Jx-DLT:深度学习工具箱 该工具箱包含卷积神经网络(CNN)。在

部分展示了如何使用基准数据集与CNN程序的示例,并且演示了采用一到三个卷积层设置的方法。有关此工具箱的详细信息可以在GitHub上找到相关页面。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • K(CNN)-MATLAB
    优质
    本项目提供了一个便捷的MATLAB工具箱,用于构建和训练带有K折交叉验证机制的卷积神经网络(CNN),助力科研与工程应用中的深度学习任务。 Jx-DLT:深度学习工具箱 该工具箱包含卷积神经网络(CNN)。在
    部分展示了如何使用基准数据集与CNN程序的示例,并且演示了采用一到三个卷积层设置的方法。有关此工具箱的详细信息可以在GitHub上找到相关页面。
  • 10).zip_10_10_十_十
    优质
    本资源包含使用10折交叉验证方法训练和评估神经网络模型的教程及代码,适用于提高模型泛化能力和减少过拟合。 使用MATLAB进行十折交叉验证的神经网络预测。
  • 利用MATLAB进行CNN仿真
    优质
    本项目运用MATLAB深度学习工具箱构建并仿真了卷积神经网络(CNN),旨在探索其在图像识别任务中的应用效能。 版本:MATLAB 2022a,包含仿真操作录像,使用Windows Media Player播放。 领域:CNN卷积神经网络 内容:基于MATLAB深度学习工具箱的CNN卷积神经网络训练和测试仿真。分别对一维、二维以及三维卷积进行测试。 示例代码如下: ```matlab layers = [ imageInputLayer([22 1 1]) % 22X1X1 表示每个样本中的特征数量 convolution2dLayer(3, 16, Padding, same) reluLayer fullyConnectedLayer(384) % 384 表示下一个全连接隐藏层的神经元数 ]; ``` 注意事项:请确保MATLAB左侧当前文件夹路径为程序所在位置,具体操作可参考视频录像。
  • CNN--.ppt
    优质
    本PPT介绍卷积神经网络(CNN)在深度学习中的应用和原理,涵盖其架构、训练方法及实际案例分析。 人工智能领域关于CNN(深度学习之卷积神经网络)的教学版PPT讲解得很到位且详细。希望这份资料能对大家有所帮助。
  • MATLAB)函数3.0.rar
    优质
    本资源提供MATLAB深度学习卷积神经网络函数工具箱3.0版本的压缩文件,适用于开发和研究领域,助力模型训练与图像识别任务。 整理了最实用的MATLAB工具箱列表,帮助项目编程更加便捷高效。需要的朋友可以根据需求下载相关资源。大部分MATLAB资源都可以通过搜索找到并获取。
  • CNN推导与
    优质
    本课程深入浅出地讲解了深度学习中CNN卷积神经网络的原理及其数学推导,并通过实例展示了如何进行实际编程实现。 这段文字主要是关于CNN的推导和实现的一些笔记,在阅读之前建议读者具备一定的CNN基础知识。
  • MATLAB-K(KFoldCrossValidation)
    优质
    简介:本教程介绍在MATLAB中实现K折交叉验证(KFoldCrossValidation)的方法与技巧,帮助用户优化机器学习模型的评估过程。 在MATLAB开发过程中使用libsvm进行二进制分类的k-折叠交叉验证(KFoldCrossValidation)。
  • 基于Matlab分类算法、k.zip
    优质
    本资源提供了一个使用MATLAB进行数据分类与模型评估的教程。其中包括常用分类算法介绍、如何实施K折交叉验证以优化模型性能,以及利用神经网络实现复杂模式识别和预测任务的方法。适合数据分析初学者学习实践。 使用Matlab实现分类算法和k-fold交叉验证,并应用神经网络的方法。
  • ——
    优质
    卷积神经网络(CNN)是深度学习中用于图像识别和处理的重要模型,通过多层卷积提取特征,广泛应用于计算机视觉领域。 卷积神经网络(CNN)是深度学习领域的重要组成部分,在图像识别和处理任务中表现出色。其主要特点是利用卷积层和池化层来提取并学习图像特征,并通过多层非线性变换实现复杂模式的识别。 1. **基础知识** - **二维互相关运算**:这是卷积神经网络的基础操作,输入数组与卷积核(也叫滤波器)进行相互作用。具体来说,卷积核在输入数组上滑动,在每个位置计算子区域乘积和。 - **二维卷积层**:该过程通过将输入数据与多个卷积核执行互相关运算,并加上偏置来生成输出特征图,表示特定空间维度上的特征信息。 - **感受野**:一个重要的概念是“感受野”,即单个神经元可以接收的局部区域。随着网络层次加深,每个元素的感受野增大,能够捕捉更广泛的输入数据模式。 - **卷积层超参数**:包括填充(padding)和步幅(stride),用于控制输出尺寸的一致性和移动速度;此外还有多个输入通道的概念,这允许处理多维图像,并通过1×1的卷积核调整通道数量。 2. **简洁实现** - 使用PyTorch中的`nn.Conv2d`可以轻松创建二维卷积层。该函数接受参数如输入和输出通道数、卷积核大小、步幅以及填充等。 - `forward()`方法接收四维张量作为输入(批量大小,通道数量,高度及宽度),并返回同样结构的张量但可能改变的是特征图的数量及其尺寸。 3. **池化操作** - 池化层用于减少计算复杂度和防止过拟合。它们通过对输入数据进行下采样来实现这一点。 - 最大池化选择窗口内的最大值,而平均池化则取窗口内所有值的均值得到输出;PyTorch中的`nn.MaxPool2d`能够执行这些操作。 4. **LeNet** - LeNet是早期用于手写数字识别的一个卷积神经网络架构。它由Yann LeCun提出,包含一系列卷积层、池化层和全连接层。 5. **常见CNN模型** - **AlexNet**:在ImageNet竞赛中取得突破性进展的深度学习模型,首次证明了深层结构在网络图像识别中的有效性。 - **VGG网络(Visual Geometry Group)**:以其深且窄的设计著称,大量使用3×3卷积核以增加网络深度和复杂度。 - **NiN (Network in Network)**:引入微小的全连接层来增强特征表达能力。 - **GoogLeNet (Inception Network)**:采用创新性的“inception”模块设计,允许不同大小的滤波器并行工作以提高计算效率和模型性能。 这些架构的发展推动了卷积神经网络的进步,并使其成为现代深度学习系统的核心组成部分。对于图像分类、目标检测、语义分割及图像生成等领域而言,理解和掌握CNN的基本原理与实现方式至关重要。
  • (CNN)详解:视角
    优质
    本篇文章详细解析了卷积神经网络(CNN)的基本原理和结构,并从深度学习的角度探讨其应用与优化。适合初学者及进阶读者阅读。 卷积神经网络(Convolutional Neural Network,简称CNN)是深度学习领域中的重要模型之一,在图像处理、计算机视觉、语音识别以及自然语言处理等多个领域有着广泛的应用。其设计灵感来源于生物视觉系统结构,特别是大脑的视觉皮层区域。 1. 卷积层:卷积神经网络的核心在于卷积层的设计,通过一组可训练的滤波器(或权重)对输入图像进行扫描操作。每个滤波器在滑动过程中执行逐元素乘法并求和,生成一个特征映射图,并且可以捕捉到不同的视觉特性如边缘、纹理等。 2. 偏置项:除了卷积层中的滤波器参数外,还包含偏置值用于调整输出的强度水平。这确保了网络在面对微小变化时仍能保持稳定性与鲁棒性。 3. 激活函数:非线性的激活函数如ReLU(修正线性单元)被应用于卷积操作的结果中,以引入复杂模式的学习能力。 4. 池化层:CNN通常配备有池化层来减少数据的空间维度。最大值池化和平均池化是两种常见的类型,它们分别通过选择局部区域的最大或平均值来进行降维处理。 5. 全连接层:经过卷积与池化的步骤后,网络会进入全连接阶段将特征图展平,并将其输入到一个多层感知机(MLP)结构中进行分类或者回归任务的执行。 6. 批量归一化技术:批量规范化通过对每批数据应用标准化来加速训练过程并提高模型鲁棒性与泛化能力。 7. 权重共享机制:卷积神经网络利用同一滤波器在不同位置使用相同的权重,大大减少了参数的数量并且降低了过拟合的风险。 8. 深度学习框架的支持:实现CNN通常需要依赖于深度学习平台如TensorFlow、PyTorch或Keras等。这些工具提供了便捷的API以帮助开发者构建和训练复杂的神经网络模型。 9. 数据预处理步骤:在应用卷积神经网络之前,数据往往要进行归一化、增强(例如翻转、裁剪)以及标准化等一系列操作来提升模型性能。 10. 学习率策略调整:学习速率的管理是优化CNN的关键。固定的学习速率、衰减机制和自适应方法如Adam及RMSprop等都是常用的技巧。 综上所述,卷积神经网络因其独特的结构与功能,在处理视觉任务方面占据了核心地位,并且随着技术的发展不断涌现出新的变种以进一步提升其性能表现。