Advertisement

灰色预测算法的MATLAB代码_灰色预测模型_预测分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供基于MATLAB实现的灰色预测模型代码,适用于进行时间序列预测分析。通过简单参数调整即可应用于各类数据预测问题。 灰度预测算法的编程内容包括43个案例分析与解答。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB__
    优质
    本资源提供基于MATLAB实现的灰色预测模型代码,适用于进行时间序列预测分析。通过简单参数调整即可应用于各类数据预测问题。 灰度预测算法的编程内容包括43个案例分析与解答。
  • GM(1,1)_matlab__应用_GM11
    优质
    本资源深入探讨了基于MATLAB的GM(1,1)灰色预测模型及其算法实现,适用于时间序列数据的小样本预测分析。 经典灰色预测模型适用于各种需要进行灰色预测的场景。
  • 优质
    灰色预测代码模型是一种基于少量数据进行预测分析的技术,通过建立微分方程模型来挖掘系统变化规律,广泛应用于时间序列预测等领域。 灰色预测模型GM(1,n)的MATLAB源代码包括了模型建立的过程以及精度检验指标c、p的计算方法。这段描述介绍了如何使用MATLAB编写用于构建GM(1,n)模型及其评估准确性的相关代码。
  • 优质
    灰色预测代码模型是一种基于灰色系统理论开发的数据预测工具或软件,适用于小规模、贫信息环境下的数据序列预测与分析。 灰色预测模型GM(1,n)的MATLAB源代码包括了建立预测模型以及计算精度检验指标c、p的过程。
  • 18-33粒子群优化.rar_优化__粒子群优化_粒子群
    优质
    本资源提供一种基于粒子群优化(PSO)的改进型灰色预测模型,适用于时间序列短期预测问题。通过优化GM(1,1)模型参数,提高预测精度和稳定性。关键词包括粒子群算法、灰色预测及组合优化技术。 用粒子群算法优化灰色预测模型的程序已编写完成并且可以运行。如果有任何问题,请联系我进行沟通。
  • ycgmln - 副本.rar_MGM(1_n) _基于matlab
    优质
    本资源介绍了一种基于MATLAB实现的灰色预测模型(MGM),适用于数据分析与建模,尤其在数据量较少时展现出了强大的预测能力。 使用Matlab软件进行灰色模型的预测分析,并提供具体的源代码。
  • 基于MATLAB-理论
    优质
    本代码采用MATLAB实现灰色预测模型,适用于数据分析与建模中的短期预测问题。通过简单微分方程建立系统发展规律模型。 本程序能够预测未来7个单位的数据。它基于灰色理论建立的模型进行计算。所应用的数学模型是GM(1,1),并且使用一次累加法处理原始数据。
  • MATLAB
    优质
    简介:本文介绍了在MATLAB环境下构建和应用灰色预测模型的方法,探讨了其在数据稀缺情况下的高效预测能力及其广泛应用。 ### MATLAB中的灰色理论预测模型 #### 一、灰色系统简介 灰色系统理论是一种处理部分已知、部分未知信息的系统的分析方法,由邓聚龙教授于1982年提出,并广泛应用于预测与决策等领域。其中,GM(1,1)是灰色系统中最基本且最常用的预测模型之一,特别适用于时间序列数据中的少量数据情况。 #### 二、灰色预测模型GM(1,1) 该模型基于单变量的一阶微分方程构建,用于处理具有“少数据”、“贫信息”的复杂系统的建模和预测。下面将详细介绍如何利用MATLAB实现此模型,并通过具体代码示例说明其工作原理。 #### 三、使用MATLAB实现GM(1,1)模型 ##### 数据准备与累积生成 首先需要输入原始时间序列,然后对其进行一次累加操作(AGO),以增强数据间的相关性并减少随机波动的影响。以下为具体的MATLAB代码: ```matlab y = input(请输入原始数据序列:); % 示例 [48.7 57.1 76.8 76.9 21.5] n = length(y); yy = ones(n, 1); yy(1) = y(1); for i = 2:n yy(i) = yy(i - 1) + y(i); end ``` ##### 构建背景值矩阵与求解参数 接下来,根据累加生成序列构造背景值矩阵,并通过最小二乘法计算模型的两个关键参数——发展系数(a)和灰作用量(u),这两个参数共同决定了预测结果的质量。 ```matlab B = ones(n - 1, 2); for i = 1:(n - 1) B(i, 1) = -(yy(i) + yy(i + 1)) / 2; B(i, 2) = 1; end BT = B; YN = y(2:n); % 原始序列的后n-1项 A = inv(BT * B) * BT * YN; a = A(1); u = A(2); ``` ##### 预测与误差计算 利用上述参数对未来数据进行预测,并通过绝对平均误差(MAE)来评估模型的效果。 ```matlab t = u / a; t_test = input(请输入需要预测的时间步数:); i = 1:t_test + n; yys = (y(1) - t) * exp(-a * i) + t; yys(1) = y(1); for j = n + t_test:-1:2 ys(j) = yys(j) - yys(j - 1); end x = 1:n; xs = 2:n + t_test; yn = ys(2:n + t_test); plot(x, y, ^r, xs, yn, *-b); % 绘制原始数据与预测结果图 det = 0; for i = 2:n det = det + abs(yn(i) - y(i)); end det = det / (n - 1); disp([相对误差为:, num2str(det)]); disp([预测值为:, num2str(ys(n + 1:n + t_test))]); ``` #### 四、总结 本段落详细介绍了如何使用MATLAB实现灰色理论中的GM(1,1)模型。通过构建背景矩阵并求解最小二乘问题来获得关键参数,进而对未来数据进行预测和误差评估。该方法特别适用于少量时间序列数据的建模与预测,并能有效提取出隐藏在原始数据背后的规律性特征,为实际应用提供了强有力的工具。
  • Matlab
    优质
    本文章介绍了如何在MATLAB环境中构建和应用灰色预测模型,适用于数据量较小但变化趋势显著的情况。通过实例讲解了GM(1,1)模型的应用与优化技巧。 灰色预测模型在Matlab中的应用涉及到了一系列的数据分析与建模技术。这种模型通常用于处理小规模数据集的预测问题,并且能够有效利用有限的信息进行较为准确的趋势预测。使用Matlab实现灰色预测模型,可以方便地进行参数计算、模拟以及验证等步骤,从而帮助研究人员或工程师更好地理解和解决实际中的复杂问题。