Advertisement

STM32芯片的上位机和下位机之间建立通信连接。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该嵌入式开发程序,构建于stm32微控制器平台,具备数据读取和存储的功能。此外,该程序还支持上位机与下位机之间的通信,并且允许对通信协议进行灵活的调整,包括诸如停止位和奇偶校验位的设置,均可通过编程方式实现。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于STM32
    优质
    本项目基于STM32微控制器,开发实现了一个有效的上位机与下位机间的数据传输系统。通过串口通讯协议,实现了数据的可靠交换与处理。 基于STM32的嵌入式开发程序能够进行数据读取与存储,并支持上位机与下位机之间的通信。用户可以自定义通信协议,包括设置停止位、奇偶校验位等参数。
  • MyBluetooth.rar - MyBluetooth: STM32 + app - STM32蓝牙-Android
    优质
    MyBluetooth是一款基于STM32微控制器和Android设备之间的蓝牙通信软件包。它提供了一种简便的方式,用于通过蓝牙技术实现STM32硬件与Android应用程序的无线连接及数据传输功能。 基于STM32的蓝牙模块与手机通讯的应用程序开发可以使用Android Studio进行上位机程序的设计。这类项目通常涉及硬件配置、通信协议设定以及软件界面设计等多个方面的工作,旨在实现STM32微控制器通过蓝牙技术与移动设备之间的数据交换和控制功能。
  • 协议
    优质
    本文探讨了上位机与下位机之间通信的关键协议,包括数据传输方式、接口标准及常见问题解决方案,旨在提升系统间的高效通讯。 自定义的通讯协议如下: - `void OpticalDetectMotorCollectData(SSystemMotorParamterConfig &sSystemMotorParameterConfig, quint8 quDestUnit);`:用于光学检测系统收集电机数据。 - `void OpticalDetectMotorOpenBlueLight(quint8 quDestUnit);`:打开光学检测系统的蓝光功能。 - `void OpticalDetectMotorCloseBlueLight(quint8 quDestUnit);`:关闭光学检测系统的蓝光功能。 - 获取试剂卡插入状态的函数未列出具体实现,但该操作与上述功能类似。
  • STM32CAN
    优质
    本项目探讨了如何使用STM32微控制器与上位机建立基于CAN协议的通信系统,实现数据高效传输。 STM32与上位机通讯以及在CAN通信中的应用是嵌入式系统设计的关键环节之一,这个小项目提供了一个实用的示例。STM32是由意法半导体(STMicroelectronics)推出的一种基于ARM Cortex-M内核的微控制器,广泛应用于各种电子设备中,如工业自动化、物联网(IoT) 设备和智能硬件等。 在了解STM32如何与上位机进行通讯时,需要注意的是上位机通常指的是PC或服务器。而作为下位机的STM32主要负责执行实时任务。常见的通信方式包括串行通信,例如USB、UART、SPI 和 I2C 等接口。在这个项目中,可能是通过 UART 或 USB 接口实现两者之间的数据交换。其中,UART 是一种简单且广泛使用的串行通讯协议,适用于短距离和低速率的数据传输;而 USB 则提供了更高的数据传输速度,并支持电源供应,使得 STM32 可以直接从USB接口获取电力。 STM32与小车的通信是通过CAN(Controller Area Network)总线实现的。CAN 总线是一种多主站的通讯网络,特别适用于汽车电子系统和工业自动化环境中的应用,具有高抗干扰性和实时性特点。在 CAN 通讯中,每个节点都可以发送和接收数据,并通过仲裁机制确保数据能够正确传输。STM32 内部通常集成了CAN控制器模块,通过配置寄存器和编写适当的驱动程序可以实现 CAN 节点的设置及数据收发功能。 主从定时器的使用是控制电机或丝杠运动的关键技术之一,在本项目中可能是用来同步电动推杆的速度。该机制包括一个作为主定时器设定周期,另一个则根据主定时器的周期进行动作以确保精确的时间间隔控制。通过调整计数周期来改变推杆移动速度和位置。 此外,“除草下位机控制程序--电动推杆加了个停止信号”这个文件名提示项目中可能包含了一个用于控制电动推杆的程序,该程序应当包含了使电动推杆停下的逻辑功能。实现这一机制通常是通过STM32检测特定条件(如用户输入、传感器信号等),然后断开电机电源或者改变电机方向来完成。 总结来说,这个项目涵盖了 STM32 的上位机通讯技术、CAN总线通信协议的应用、主从定时器控制以及电动推杆的驱动控制等多个嵌入式开发的核心知识点。对于学习和理解基于STM32硬件控制系统的设计与实现而言,这是一个很好的实践案例。
  • 程序源码
    优质
    本资源提供一套完整的上位机与下位机间通信的程序源代码,涵盖协议设计、数据传输及错误处理等关键模块,适用于嵌入式系统开发学习者深入理解工业通讯原理。 在同一界面下放置所有的按钮去控制会使得逻辑关系变得复杂,并且用户使用起来可能会感到不舒适。因此,我们决定将功能拆分成几个单独的界面来实现。 第一界面包括:楼体、环境以及退出三个选项。 第二界面则有楼体1、楼体2及返回和退出两个按钮。 第三界面包含户型A01到A04与B01至B04,并且同样提供返回和退出功能。 第四界面展示的是户型2-01至2-04,以及用于回到上一级菜单的“返回”选项。 具体的操作步骤如下: 第一界面: 按钮1:点击开时开启第[0]路继电器并切换到第二界面;关闭则关断该路。 按钮2:控制环境功能,按下后开启或关闭第[1]路继电器。 第二界面: 按钮3:激活楼体1选项,打开第[2]路继电器,并跳转至第三界面; 按钮4:选择楼体2项并切换到第四界面;此操作会触发开闭动作于第[3]路上。 返回(按钮5):用户可借此回到第一级菜单。 第三界面: A01-A04户型对应六个独立的继电器控制,每个房间按下一个特定编号的按键即可开启或关闭相关联的那个路。例如: - 按钮6操作的是第[4]路; - 按钮7与第[5]路上的状态变化有关;以此类推。 返回(按钮14):此选项将用户从当前界面引导回第二级菜单。 第四界面: 户型2-01至2-04的控制方式类似第三界面,每个房间对应一个独立的继电器。例如: - 按钮15管理第[C]路; - 按钮16与第[D]路上的状态变化有关;以此类推。 返回(按钮19):此选项将用户从当前页面引导回第二级菜单。 以上描述中,所有的“开”和“关”的操作均指继电器的动作,“弹出”或“切换到”的意思是指界面的转换。
  • 设计初探
    优质
    本文探讨了上位机与下位机之间通信的设计方法,分析了几种常见的通信协议,并通过实例说明了如何选择合适的方案实现高效的数据传输。 本段落介绍了PC机与8051单片机的串口通信的基本知识,适合初学者学习。
  • 执行程序.rar
    优质
    本资源包含一套用于实现上位机与下位机之间通信的执行程序,适用于自动化控制系统中的数据传输。 上位机与下位机通讯使用了JavaSwing的Windows窗体布局,并进行了设备升级、读写设备信息等工作。EXE执行程序可以直接查看源程序运行的窗口效果,附带压缩包中有下载源程序源码的链接供参考。上传的jar包适用于32位和64位系统运行程序。如有不足之处,请随时留言反馈。
  • STM32 USB
    优质
    本项目基于STM32微控制器实现USB通信功能,开发了具有不同功能的上位机和下位机软件,适用于数据传输与控制应用。 STM32 USB通信,包含上下位机功能,并已验证可用。
  • STM32 USB HID源码
    优质
    本项目提供基于STM32微控制器与PC进行USB HID通信的完整代码示例,涵盖主从设备实现细节。适合嵌入式开发学习参考。 STM32-USB-HID通信:上下位机源码包含全部代码,可以实现所需功能。
  • STM32 USB
    优质
    本教程详细介绍如何使用STM32微控制器进行USB通信,并实现与其上位机软件的数据交换。适合嵌入式开发人员学习参考。 STM32 USB通信上位机通信是嵌入式系统中的常见技术应用之一,主要涉及通过USB接口将STM32微控制器与个人计算机(PC)连接起来进行数据交换。基于ARM Cortex-M内核的STM32系列微控制器被广泛应用于各种电子设备中。 本资源专注于使用STM32作为USB设备来实现USB-HID(Human Interface Device)通信协议,以及如何设计上位机程序以配合该协议工作。HID协议是专为键盘、鼠标等人机交互设备而设的USB标准子集,并可扩展至其他类型设备如嵌入式系统使用中。 STM32集成的USB控制器可以配置成设备模式并编写固件来实现HID功能,这包括定义报告描述符以指定数据结构。在STM32上,通常需要设置UART、定时器等外设模拟HID行为。 对于PC端而言,则需开发能够识别和通信于作为USB-HID的STM32设备的应用程序。这些应用程序可以使用多种编程语言编写,如C#、Java或Python,并通过调用操作系统的API(例如Windows上的WinUSB库或Linux下的libusb)来实现与HID设备的数据交换。 资源中提供的示例上位机源码可能包含以下关键部分: 1. 设备枚举:程序首先会搜索并识别连接的USB设备,寻找符合预期标识符的HID设备。 2. 打开设备:找到目标后,应用程序将打开与该设备通信所需的句柄。 3. 读写操作:程序设置监听机制以接收来自STM32设备的数据,并向其发送数据包命令。 4. 数据解析:接收到的信息需要根据报告描述符进行解码和解释成有意义的内容。 5. 用户界面:应用程序可能还会有用户交互界面,如数据显示、控制按钮等。 掌握并应用STM32 USB-HID通信技术对于开发涉及嵌入式设备与PC互动的应用程序非常有用,例如远程监控或数据采集场景。通过学习提供的源码,开发者可以迅速理解该技术,并将其应用于自己的项目中。