Advertisement

Carsim与Simulink联合仿真的横摆稳定性控制——综合运用LQR、模糊PID及滑模控制以实现理想横摆角速度的跟踪与稳定

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究探讨了将CarSim与Simulink结合进行车辆横摆稳定性控制仿真,通过融合LQR、模糊PID和滑模控制方法,旨在优化汽车在动态行驶过程中的横摆角速度响应与稳定性。 本段落探讨了Carsim与Simulink联合仿真的应用,并提出了一种基于LQR、模糊PID及滑模控制的横摆稳定性控制系统的设计方法。该系统旨在实现汽车理想的横摆角速度跟踪以及抑制质心侧偏角,以提高车辆稳定性。 文中采用线性二自由度车辆操纵特性模型作为控制目标,通过建立与汽车横摆力矩和状态偏差相关的动力学关系来构建整个控制系统架构。具体而言,在速度跟踪模块中采用了前馈加反馈的PID控制策略;在上层设计了三种不同的方案:第一种使用LQR方法进行决策以综合实现期望横摆角速度的追踪及质心侧偏角抑制,第二种则利用模糊PID控制算法,根据理想与实际横摆角速度之间的差异输出附加横摆力矩,第三种采用滑模控制技术来确定附加横摆力矩。 在下层部分,则通过基于规则和二次规划的方法对来自上层模块的总需求扭矩进行合理的分配。这种设计有效地实现了汽车稳定性控制的目标,并且文档详细、代码规范。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CarsimSimulink仿——LQRPID
    优质
    本研究探讨了将CarSim与Simulink结合进行车辆横摆稳定性控制仿真,通过融合LQR、模糊PID和滑模控制方法,旨在优化汽车在动态行驶过程中的横摆角速度响应与稳定性。 本段落探讨了Carsim与Simulink联合仿真的应用,并提出了一种基于LQR、模糊PID及滑模控制的横摆稳定性控制系统的设计方法。该系统旨在实现汽车理想的横摆角速度跟踪以及抑制质心侧偏角,以提高车辆稳定性。 文中采用线性二自由度车辆操纵特性模型作为控制目标,通过建立与汽车横摆力矩和状态偏差相关的动力学关系来构建整个控制系统架构。具体而言,在速度跟踪模块中采用了前馈加反馈的PID控制策略;在上层设计了三种不同的方案:第一种使用LQR方法进行决策以综合实现期望横摆角速度的追踪及质心侧偏角抑制,第二种则利用模糊PID控制算法,根据理想与实际横摆角速度之间的差异输出附加横摆力矩,第三种采用滑模控制技术来确定附加横摆力矩。 在下层部分,则通过基于规则和二次规划的方法对来自上层模块的总需求扭矩进行合理的分配。这种设计有效地实现了汽车稳定性控制的目标,并且文档详细、代码规范。
  • 基于CarsimSimulink仿LQRPID系统能优化方法
    优质
    本研究提出了一种结合LQR模糊PID和滑模控制策略,通过Carsim与Simulink的联合仿真平台,优化车辆的理想横摆角速度追踪及横向稳定性。 本段落介绍了一种基于Carsim与Simulink联合仿真的横摆稳定性控制系统设计,该系统采用了LQR、模糊PID及滑模控制方法。 研究结合了跟踪理想横摆角速度的方法以及抑制汽车质心侧偏角的策略,并以线性二自由度车辆操纵特性模型作为目标。根据汽车横摆力矩与车辆状态偏差之间的动力学关系建立了控制系统模型,其中速度跟踪模块采用了前馈加反馈的PID控制结构。 上层方案中,第一种采用LQR方法决策汽车横摆力矩,旨在同时实现期望横摆角速度的追踪和质心侧偏角的抑制。第二种则运用模糊PID控制策略,通过理想与实际横摆角速度之差作为输入信号输出附加横摆力矩来改善系统性能。第三种方案则是利用滑模控制技术获取附加横摆力矩。 在下层部分,则是采用基于规则和二次规划的方法对来自速度跟踪模块的需求总力矩以及由横摆力矩控制系统产生的横摆力矩进行合理分配,从而实现汽车稳定性控制的目标。文档内容详尽且代码规范。
  • 基于车辆研究(2008年)
    优质
    本研究聚焦于通过应用模糊控制系统提升车辆在各种行驶条件下的横摆稳定性,旨在提高行车安全性和驾驶舒适性。论文发表于2008年。 本段落提出了一种模糊逻辑控制方法以增强车辆的横摆稳定性。通过差动制动产生合适的横摆力矩来使车辆的横摆角速度和质心侧偏角度跟踪其期望值,并且利用3自由度模型对质心侧偏角度进行了估计。在不同的转向操纵条件下,使用7自由度非线性车辆模型进行仿真研究。仿真的结果证明了所设计模糊控制器的有效性和可靠性。
  • 汽车系统仿研究(2013年)
    优质
    本研究聚焦于汽车稳定控制系统模型及其在横摆控制中的仿真应用,旨在提升车辆动态性能和行驶安全性。 在Matlab/Simulink环境中建立了包含横摆运动和侧倾运动的八自由度整车动力学模型以及车辆参考模型。通过采用基于模糊控制理论的状态差异法制定直接横摆控制策略,实现了ESC系统对车辆稳定性的有效控制。针对典型的鱼钩试验工况进行了仿真分析,结果显示所提出的控制策略能够有效地实现横摆稳定性控制,并且减少了侧向加速度,提高了汽车的抗侧翻能力、稳定性和安全性。
  • 倒立PIDLQR单级倒立PID为例并进行MATLAB仿
    优质
    本研究探讨了倒立摆系统的三种控制策略——模糊控制、PID控制和LQR控制,并通过Matlab仿真重点分析了基于PID的单级倒立摆控制系统。 本段落主要探讨二级倒立摆的控制问题,并采用模糊控制、PID以及LQR控制进行Simulink仿真。
  • 基于自适应PID单级旋转倒立Simulink
    优质
    本研究设计了一种基于模糊自适应PID算法的控制系统,用于在Simulink环境中稳定控制单级旋转倒立摆系统,实现了高效稳定的姿态调节。 模糊自适应PID单级旋转倒立摆稳定控制simulink
  • 基于LQR倒立平衡车MATLAB仿仿录像
    优质
    本研究采用MATLAB仿真平台,通过设计LQR(线性二次型调节器)控制器来实现对倒立摆平衡系统的稳定性优化。该文详细探讨了LQR理论在非线性系统中的应用,并通过实际仿真实验验证控制策略的有效性和可行性。 版本:MATLAB 2021a 我录制了一段基于LQR控制器的倒立摆平衡车稳定性控制的仿真操作录像,在该视频中可以跟随演示步骤重现仿真实验结果。 领域:线性二次型调节器(LQR)控制器 内容概述:本项目通过MATLAB实现了一个使用LQR控制器来稳定一个倒立摆模型的控制系统。该项目展示了如何利用MATLAB进行基于LQR理论的动态调整过程仿真,特别关注于平衡车在不同条件下的稳定性控制。 适用人群:该资源适合本科和研究生层次的教学与科研人员学习参考,在掌握相关知识的基础上能够帮助他们更好地理解和应用线性二次型调节器技术来解决实际问题。
  • 基于纯路径算法CarSimSimulink仿
    优质
    本研究提出了一种基于纯跟踪控制策略的路径跟踪算法,并通过CarSim和Simulink平台进行联合仿真验证。 纯跟踪控制与路径跟踪算法是自动驾驶及智能车辆领域中的关键技术之一。这些算法的主要目标在于确保车辆能够准确且稳定地沿着预定路线行驶,在实际应用中通常结合车辆动力学模型以及实时传感器数据,以实现精确的轨迹执行。 在联合仿真过程中,Carsim和Simulink是常用的工具。其中,Carsim是一款专业的车辆动力学模拟软件,可精准地模拟各种驾驶条件下的车辆行为;而Simulink则是MATLAB环境中的一个动态系统建模与仿真平台,在控制系统的设计及分析中被广泛应用。 通过将Carsim的车辆模型与Simulink的控制算法结合使用,可以提供全面的测试环境。在Simulink内设计并优化路径跟踪控制器(如PID控制器、滑模控制器或基于模型预测控制(MPC)的方法),随后利用接口使这些控制器输出作为车辆输入,以模拟真实驾驶情况。 常见的几种路径跟踪方法包括: 1. **PID控制器**:这是一种基本且常用的策略,通过比例(P)、积分(I)和微分(D)项的组合调整行驶方向,使其尽可能接近预定路线。 2. **滑模控制**:这种非线性控制方式具有良好的抗干扰性和鲁棒性,能够有效应对车辆模型中的不确定性因素。 3. **模型预测控制(MPC)**:MPC是一种先进的策略,考虑未来一段时间内的系统动态,并通过优化算法在线计算最佳的控制序列,以实现最小化跟踪误差或满足特定性能指标的目标。 在联合仿真过程中,我们可通过调整控制器参数、修改车辆模型或者改变模拟条件来评估不同算法在各种场景下的表现。图像文件(例如1.jpg、2.jpg和3.jpg)可能会展示仿真的可视化结果,包括行驶轨迹、控制信号的变化以及误差分析等;而纯跟踪控制路径跟踪算法联合.txt可能包含详细的仿真设置信息、数据及分析。 研究和发展这些技术对于提高自动驾驶车辆的安全性和性能至关重要。借助Carsim与Simulink的联合仿真环境进行深入开发和验证,为实际应用提供了可靠的基础支持。