Advertisement

子模函数与优化/Submodular Functions and Optimization

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《子模函数与优化》一书深入探讨了离散系统中的子模函数理论及其应用,涵盖从基础概念到高级算法的主题,是研究和实践中不可或缺的资源。 次模函数是一种在许多计算机工程问题中非常实用的集合函数,它具有边际效益递减的特点。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • /Submodular Functions and Optimization
    优质
    《子模函数与优化》一书深入探讨了离散系统中的子模函数理论及其应用,涵盖从基础概念到高级算法的主题,是研究和实践中不可或缺的资源。 次模函数是一种在许多计算机工程问题中非常实用的集合函数,它具有边际效益递减的特点。
  • MATLAB代码-optimization: 回溯方法
    优质
    本项目包含使用MATLAB实现的各种数值优化算法及其回溯策略,适用于解决工程和科学计算中的复杂优化问题。 这段文字描述了一个包含多种数值优化方法的Matlab代码集合,其中包括黄金分割搜索、BFGS变体以及回溯法,这些方法用于寻找给定函数的局部或全局极值。此外,该代码集还包含了绘图功能以展示计算过程中的结果变化情况。此资源最后更新时间为2015年。
  • Chapter 14: PID Controller Optimization Design Using Particle Swarm Algorithm.rar_PID粒群_PID_粒_
    优质
    本资源详细介绍利用粒子群算法对PID控制器进行优化设计的方法,涵盖理论分析与仿真验证,适用于自动控制领域的研究和应用。 第14章 基于粒子群算法的PID控制器优化设计 粒子群算法是一种有效的参数优化方法,在本章中我们将其应用于PID控制器的设计与改进。通过利用粒子群算法,可以有效地寻找最优或接近最优的PID控制参数,从而提高系统的性能和稳定性。
  • Combinatorial Optimization Algorithms and Complexity
    优质
    《Combinatorial Optimization Algorithms and Complexity》一书深入探讨了组合优化算法及其复杂性理论,是计算机科学与运筹学领域的重要参考文献。 模型预测控制算法可以通过简化数据来减少计算量。
  • Python中的猎人猎物算法极值求解程序,Hunter-Prey-Optimization
    优质
    本项目实现了基于自然生态系统中猎人和猎物互动策略的新型启发式搜索算法——猎人猎物优化算法,并应用于Python环境以解决各种函数极值问题。 Python猎人猎物优化函数极值寻优程序(Hunter-Prey-Optimization)。
  • 中的粒群方法
    优质
    《函数优化中的粒子群方法》一文深入探讨了利用粒子群算法解决复杂函数优化问题的有效策略,展示了其在多领域应用中的优越性能。 粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的算法,灵感来源于鸟群或鱼群的行为模式。这种算法在解决多模态、非线性甚至不连续复杂问题上表现出色,其核心思想是通过模拟粒子在搜索空间中的随机游动以及个体间的相互学习来寻找最优解。 每个PSO中的粒子代表一个可能的解决方案;它的位置和速度决定了它在解空间中移动的方式。每个粒子都有与其目标函数相关的适应度(fitness)值,该值用于评估其质量。具体而言,“fitness”指我们需要优化的目标函数:此数值越小或越大(取决于问题的具体性质),表示对应的方案就越优秀。 算法的执行步骤如下: 1. 初始化一群随机生成的位置和速度。 2. 计算每个粒子适应度,并根据目标函数进行评价。 3. 更新个人最佳位置,即个体迄今为止找到的最佳解决方案。 4. 确定全局最优解,在所有粒子中挑选出表现最好的那个。 5. 根据惯性权重、学习因子及当前的速度更新粒子的位置和速度。这反映了个体的学习过程以及群体的协作精神。 6-9步骤重复执行直至达到预设迭代次数或满足其他停止条件。 PSO的关键参数包括惯性权重(Inertia Weight)、两个学习因子(Learning Factors, c1 和 c2)。这些因素决定了算法的行为方式,对性能有重要影响。在实践中,该方法可以应用于机器学习模型的优化、工程设计问题和图像处理等领域。 不过值得注意的是,尽管PSO具有强大的全局搜索能力及灵活性,在某些情况下也可能面临陷入局部最优解或收敛速度慢等问题。 为了克服这些限制,研究者开发了多种改进版本如混沌PSO、自适应PSO等。通过理解并掌握基本原理与操作步骤,我们可以利用粒子群优化有效解决各种复杂的优化问题。 实践中选择合适的参数配置和适合的优化问题是关键所在,并需要经过不断的实践探索才能实现最佳效果。
  • 秀的凸教材《Convex Optimization
    优质
    《Convex Optimization》是一本全面介绍凸优化理论与应用的经典教材,适合科研人员及工程技术人员学习和参考。书中内容深入浅出,涵盖算法设计、复杂性分析等核心议题,极具实用性。 Stephen Boyd的凸优化教材非常值得下载学习,适合从事相关专业的人员使用。
  • Combinatorial Optimization Algorithms and Their Complexity
    优质
    本书深入探讨了组合优化算法及其复杂性理论,涵盖多种经典和现代算法,并分析其在解决实际问题中的应用与局限。 《组合最优化算法与复杂性》一书由Christos H. Papadimitriou和Kenneth Steiglitz合著。该著作深入探讨了组合最优化领域的核心概念,包括各种经典问题的算法设计以及这些问题所面临的计算复杂性的挑战。书中不仅涵盖了理论知识,还提供了实际应用案例和技术细节,是研究计算机科学、运筹学及数学相关领域学者和学生的宝贵资源。
  • Constrained Optimization and Lagrange Multiplier Methods.djvu
    优质
    《Constrained Optimization and Lagrange Multiplier Methods》是一本深入探讨约束优化及其拉格朗日乘数法的专著,适用于研究数学规划和工程问题。 Dimitri P. Bertsekas的《Constrained Optimization and Lagrange Multiplier Methods》是一本关于约束优化方面非常全面且优秀的国外教材。这本书详细介绍了约束优化和拉格朗日乘数法的相关内容。
  • Optimization and Synthesis of Digital Circuits
    优质
    本课程聚焦于数字电路的设计与优化,涵盖逻辑门、组合逻辑及时序逻辑等核心概念,深入探讨低功耗设计和高性能架构,并教授先进的自动化合成工具使用方法。 这本面向计算机工程专业的新版研究生教材提供了对VLSI电路在功能和逻辑层面的计算机辅助设计进行现代、前沿的探讨,并深入研究了数字电路CAD中的一个重要主题:从抽象模型到详细规格的设计综合。书中涵盖的主题包括硬件建模、硬件模型编译技术、高层次综合、逻辑合成以及库映射算法等。课程名称可以是《数字CAD》《高级逻辑设计》或《VLSI设计补充内容》。