Advertisement

半桥电路详解及其工作原理分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文详细解析了半桥电路的工作机制与应用特点,并深入探讨其工作原理,帮助读者全面理解该电路的设计与优化方法。 在PWM(脉宽调制)和电子镇流器的应用中,半桥电路扮演着重要角色。这种电路由两个功率开关器件构成,它们以图腾柱的形式连接,并输出方波信号。本段落将介绍半桥电路的工作原理,帮助读者更好地理解这一电路结构。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文详细解析了半桥电路的工作机制与应用特点,并深入探讨其工作原理,帮助读者全面理解该电路的设计与优化方法。 在PWM(脉宽调制)和电子镇流器的应用中,半桥电路扮演着重要角色。这种电路由两个功率开关器件构成,它们以图腾柱的形式连接,并输出方波信号。本段落将介绍半桥电路的工作原理,帮助读者更好地理解这一电路结构。
  • 逆变的单相
    优质
    本文章详细探讨了半桥逆变电路在单相电压模式下的工作原理,包括其基本结构、操作模式及应用优势,为电力电子技术研究提供理论参考。 电路结构 图5-6 单相半桥电压型逆变电路及其工作波形 工作原理: 1. V1和V2的栅极信号在正负半周分别偏置,彼此互补。 2. 输出电压uo为矩形波,其幅值Um等于Ud的一半。 3. 输入电流io随负载特性而变化。对于感性负载,如图5-6b所示: - 当V1或V2导通时,io和uo的方向相同,直流侧向负载提供能量; - 当VD1或VD2导通时(即二极管反馈状态),io和uo方向相反,电感中的储能会反向回馈至直流侧。 4. VD1、VD2作为反馈二极管使用,在确保电流连续的同时也起到续流作用。
  • 逆变
    优质
    《逆变电路原理图详解及工作原理分析》一书深入浅出地介绍了逆变电路的工作机制和设计方法,通过详细解析各类典型逆变器的电路结构与运行机理,为读者提供了全面而实用的技术指导。 工作原理如下:当开关T1和T4闭合而T2和T3断开时,输出电压u0等于直流电源电压Ud;反之,当开关T1和T4断开且T2和T3闭合时,输出电压u0为-Ud。通过以频率fS交替切换上述两种状态,在电阻R上可以获得交变的电压波形(如图所示),其周期Ts等于1/fS。这样就将直流电压E转换成了交流电压uo。然而,uo包含多种谐波成分,若要获得正弦波电压,则需使用滤波器进行处理以去除不需要的频率分量。
  • UPS
    优质
    本文详细解析了UPS(不间断电源)的工作机制及内部电路设计,并提供了直观的电路图以帮助读者更好地理解其运行原理。 UPS(不间断电源)可以确保在停电情况下计算机系统仍能继续运行一段时间以进行紧急存盘操作,从而避免因断电导致的工作中断或数据丢失问题。当市电供应正常时,UPS会将输入的电力稳压后提供给负载使用,并同时对内部电池充电;而在市电中断的情况下,UPS能够迅速切换至由内置电池供电的状态,确保负载设备继续运行并受到保护免受损害。此外,这种装置通常还具有针对过高或过低电压情况下的防护功能。 本段落将介绍一种实用的UPS电源电路图及其工作原理。
  • 机驱动
    优质
    本文深入解析了全桥电机驱动电路的工作机制和设计要点,帮助读者理解其在各类电机控制应用中的重要性和实现方式。 在电路设计中,全桥的作用至关重要。当桥式整流电路中的四个二极管封装在一起时就构成了全桥电路,而这种结构实际上就是我们常说的H桥电路。本段落将主要介绍H桥电机驱动的工作原理,并从逆时针和顺时针两个方面进行详细分析。 图1展示了一个典型的直流电机控制电路。该名称来源于其形状酷似字母H。四个三极管构成了H的四条垂直腿,而电机则是横跨在中间的部分(请注意:图1及其后续两张图仅是示意图,并非完整的电路图,其中未显示三极管的驱动电路)。 如上所述,H桥式电机驱动电路包括4个三极管和一个电机。
  • 与注意事项
    优质
    本文探讨了半桥电路的工作原理,并提供了在设计和应用过程中的重要注意事项。适合电子工程爱好者及专业人士参考学习。 本段落详细介绍了半桥电路的工作原理及其注意事项。作为PWM(脉宽调制)技术和电子镇流器中的核心组件之一,半桥电路由两个功率开关器件构成,并通过输出方波信号来运作。 在工作过程中,它经历以下阶段:首先当Q1导通且Q2关闭时,变压器两端的电压为母线电压的一半;此时能量从原边传递到副边。接着,在第二个阶段中,即两管均断开的情况下,由于整流二极管的作用导致次级绕组短路,并使初级也处于类似状态。最后是当Q2导通而Q1关闭时的情况,其工作方式与第一种情况相似。 在使用半桥电路的过程中需要注意以下几点问题: - 偏磁现象:电容连接点A的电压变化可能导致偏磁效应出现,进而导致铁心饱和和大电流风险。为解决此问题,在变压器原边串联一个补偿电容器。 - 桥臂电容的选择:应尽量选择等值容量(C1=C2)以确保稳定运行。 - 直通现象:即两个开关同时导通造成短路,可以通过限制脉冲宽度来避免。 此外,对于半桥电路的驱动还应注意以下几点: - 对原边线圈进行过载保护; - 实现软启动功能; - 控制磁饱和度以防止偏置效应的发生; - 采取措施阻止直流通路形成; - 设置闭环控制回路并采用适当的隔离技术(例如光电耦合器)来确保信号的安全传输; - 在出现过电压时切断开关脉冲进行保护; - 安装限流装置以防短路损害器件; - 当输入电压低于正常工作范围时,禁止设备启动。 此外,半桥电路驱动的特点包括: 1. 上下两个桥臂不共地。 2. 具备隔离特性。
  • 单相逆变
    优质
    本文章介绍了单相半桥逆变电路的基本工作原理和组成部分,包括开关元件、储能元件及其在直流电源与交流负载之间的能量转换过程。 单相半桥逆变电路及其相关信号波形如图3-19所示。C1和C2是两个容量很大且相等的电容,它们将电压Ud分成两部分,并使B点电压为Ud/2。三极管VT1和VT2基极加有一对相反的脉冲信号,VD1和VD2为续流二极管。R、L代表感性负载(例如电动机就是典型的感性负载,其绕组在交流电下表现为感性特性,相当于一个电感L;绕组本身的直流电阻用R表示)。
  • 开关功能.pdf
    优质
    本书详细介绍了开关电源的工作原理及其实现所需的各项关键功能电路。通过深入浅出的方式,帮助读者全面理解并掌握开关电源的设计与应用技术。适合电子工程专业的学生和工程师阅读参考。 开关电源的原理及其各功能电路详解包括输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路以及输出整流滤波电路等主要部分。辅助保护措施则涵盖输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路和输出短路保护电路等功能模块。
  • LC振荡特点
    优质
    本文深入探讨了LC振荡电路的基本工作原理,并对其主要特点进行了详细分析。通过理论与实例结合的方式,帮助读者全面理解LC振荡器在电子工程中的应用价值和优势。 LC振荡电路是由电感L与电容C组成的选频网络构成的振荡电路,主要用于生成高频正弦波信号。常见的LC正弦波振荡电路包括变压器反馈式、电感三点式以及电容三点式的LC振荡电路。 辐射功率在LC振荡电路中与频率的四次方成比例关系。为了使该类型的电路能够发出较强的电磁波,需要提升其工作频率,并确保整个系统以开放形式运作。
  • 磁灶
    优质
    《半桥电磁灶电路图原理》一文深入剖析了半桥逆变技术在电磁灶中的应用,详细介绍了其工作原理、电路设计和优化策略,为电磁加热设备的研究提供了理论支持与实践指导。 半桥电磁灶原理图采用瑞萨芯片R5F212L4,输出两路互补PWM控制上下桥。经过测试,检锅和提锅功能正常,并能自动调整功率。最大功率可达3100W。电路图源程序稍后上传。