Advertisement

神经网络逆变器采用双闭环PID控制方案。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
电力电子领域中的逆变器控制系统采用神经网络、PID以及另一种PID控制方案,并具备双闭环控制结构和双模式下的灵活切换功能。该系统设计具有直接可运行的模型特性,特别适用于本硕阶段的研究生进行毕业设计项目。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于PID.zip
    优质
    本项目提出了一种新颖的逆变器控制策略,采用神经网络优化PID控制器,实现电压和电流双闭环精确调节。 电力电子行业中逆变器采用神经网络PID与传统PID两种双闭环控制方式,并可实现双模式自由切换。模型可以直接运行,适用于本科及硕士毕业设计项目使用。
  • 优质
    本研究探讨了逆变器系统的双重闭环控制策略,通过优化内外环控制器设计,提升了系统动态响应与稳态精度,适用于可再生能源并网等场景。 一个详细的仿真教程,希望能帮助遇到困难的同学。
  • 基于PID充电机.zip
    优质
    本项目探讨了一种利用神经网络优化的传统PID控制策略,应用于双闭环充电机控制系统中,以提高系统响应速度和稳定性。 在电力电子行业的充电机设计中,可以采用神经网络PID与传统PID双闭环控制方法。这两种模型可以直接运行,并且仿真时间步长设定为Ts=1e-6,非常适合本科或硕士毕业设计项目使用。
  • PI-doublePI.zip
    优质
    本资源为并网逆变器控制系统设计,采用双闭环PI控制策略,旨在优化系统动态响应与稳定性,适用于电力电子技术研究与应用。 本段落介绍了一种并网逆变器的PI双闭环设计方法。该设计采用LCL滤波器,并在dq坐标系下通过电压电流解耦来实现控制。实验结果表明,在这种配置下的电压和电流波形效果非常理想,欢迎对此进行学习交流。
  • PV.rar_光伏MPPT_系统_光伏_
    优质
    本资源探讨了基于双闭环控制策略的光伏MPPT逆变系统设计与优化,旨在提升光伏发电效率和稳定性。 标题中的“PV.rar_MPPT 逆变_光伏 双闭环_光伏mppt_光伏双闭环_逆变器双闭环”揭示了本次讨论的核心是关于光伏系统中最大功率点跟踪(Maximum Power Point Tracking, MPPT)技术和逆变器的双闭环控制策略。在光伏系统中,MPPT是一项关键技术,它能确保太阳能电池板在不同光照条件下输出的最大功率被有效地利用。 描述中的“光伏逆变器的双闭环控制仿真原理图 dc-dc采用mppt跟中”进一步细化了主题内容。这里提到的主要环节包括:一是dc-dc转换器,在该过程中MPPT通常发生,负责调整负载以使电池板工作在最佳功率点;二是逆变器的双闭环控制系统,涉及电流环和电压环控制,确保逆变器输出电力的质量与稳定性。 光伏系统中的MPPT是通过监测电池板电压和电流的变化来找到最大功率的工作点。DC-DC转换器根据这些信息调整其状态以保证系统的运行始终处于最佳功率状态下。而逆变器的双闭环控制系统则用于在交流侧实现精确的电压和电流控制,其中电流环主要负责快速响应输出电流的稳定性,而电压环关注于长期稳定性的维持,确保输出符合电网或负载的需求。 PV.mdl可能是一个MATLAB Simulink模型文件,用来仿真光伏逆变器双闭环控制系统的运行情况。在Simulink中可以搭建电路模型以模拟光伏阵列、DC-DC转换器、逆变器以及MPPT算法的动态行为。 该模型通常包含以下部分: 1. **光伏阵列模型**:反映光照强度和温度变化对输出的影响,通过模拟I-V和P-V特性来体现。 2. **MPPT控制器**:如扰动观察法(Perturb and Observe, P&O)或增量导纳法(Incremental Conductance, IC),用于追踪最大功率点。 3. **DC-DC转换器**:例如Boost或Buck变换器,调整负载电压以适应MPPT需求。 4. **逆变器模型**:将直流电转化为交流电,并可能包括PWM调制等技术。 5. **双闭环控制系统**:电流环和电压环通常使用PI控制器来保证性能指标。 通过仿真分析不同工况下的系统表现,可以优化控制参数以确保光伏逆变器在各种环境条件下的高效稳定运行。此外,这种模型也可用于研究新的控制策略或改进现有MPPT算法的效果。 这一话题涵盖了光伏能源系统的关键技术,包括MPPT、逆变器控制和系统仿真等,这些都是现代太阳能电力系统设计与优化的重要组成部分。
  • 充电机(基于PID与模糊PID).rar
    优质
    本资源探讨了充电机中采用神经网络PID和模糊PID的双闭环控制系统设计,旨在提高充电效率及稳定性。适合研究与学习交流。 在电力电子行业的充电机设计中,可以采用神经网络PID、模糊PID以及传统的PID三种双闭环控制方法。这些模型可以直接运行,并且仿真时间步长设置为Ts=1e-6,非常适合用于本科或硕士毕业设计项目。
  • PWM.rar_三相_三相电压__系统
    优质
    本资源包包含一个用于三相逆变器的PWM控制策略,采用先进的双闭环控制技术优化三相电压输出。适合深入研究和开发高效电力电子设备。 三相电压型逆变器仿真采用双闭环控制策略,其中电流内环和电压外环共同作用以实现精确的控制系统响应。
  • 的PI研究_并_
    优质
    本文深入探讨了并网逆变器中采用的PI双闭环控制系统,分析其在提升系统稳定性、动态响应及抑制电网扰动方面的优势和应用前景。 单相并网逆变器的Simulink仿真适合用于学生毕业设计、课程设计以及自学练习参考。