Advertisement

基于深度学习与卷积网络及Pytorch库的超分辨率图像重建实现.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目采用深度学习和卷积神经网络技术,结合Python的PyTorch框架,实现了高效的超分辨率图像重建算法。 我们提供深度学习、机器学习、自然语言处理及计算机视觉的实战项目源码,帮助您将理论知识转化为实际技能。如果您已经具备一定的基础知识,可以基于这些源码进行修改和扩展,实现更多功能。 【期待与您同行】 我们真诚地邀请您下载并使用我们的资源。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Pytorch.zip
    优质
    本项目采用深度学习和卷积神经网络技术,结合Python的PyTorch框架,实现了高效的超分辨率图像重建算法。 我们提供深度学习、机器学习、自然语言处理及计算机视觉的实战项目源码,帮助您将理论知识转化为实际技能。如果您已经具备一定的基础知识,可以基于这些源码进行修改和扩展,实现更多功能。 【期待与您同行】 我们真诚地邀请您下载并使用我们的资源。
  • .zip
    优质
    本项目运用深度学习技术实现图像的超高分辨率重建,旨在提升低分辨率图像的质量和清晰度,适用于多种应用场景。 本实验旨在利用深度学习技术对图像进行超分辨率重建,涉及的技术包括卷积神经网络、生成对抗网络及残差网络等。开发环境方面,使用了“Microsoft Visual Studio”、“VS Tools for AI”等组件,并采用了“TensorFlow”、“NumPy”、“scipy.misc”和“PIL.image”等框架与库,“scipy.misc”和“PIL.image”用于图像处理工作。此外,实验还要求有“NVIDIA GPU”的驱动程序、CUDA以及cuDNN的支持。 对于数据集的选择,可以考虑使用计算机视觉领域的常见数据集,本实验将以CelebA数据集为例进行说明。CelebA是香港中文大学发布的一个大型人脸识别数据库,包含10,177位名人的202,599张图片,并附有五个位置标记及40种属性标签,适用于人脸检测、面部特征识别和定位等任务的数据需求。 实验中将使用CelebA数据集中名为img_align_celeba.zip的文件作为主要素材,选取其中前10661张图像进行处理。每一张图片经过调整后尺寸为219x178像素,以人像双眼的位置为准进行了标准化。
  • DRCN
    优质
    本研究聚焦于深度学习框架下的DRCN(递归残差卷积网络)技术,旨在实现图像的高精度超分辨率重建,并对其算法进行了复现和优化。 2016年DRCN论文的复现代码采用TensorFlow 1.0版本,并已添加详细备注。请仔细阅读readme文档以更快上手。
  • 红外
    优质
    本研究运用深度学习技术,致力于提升红外图像的清晰度和细节表现力,实现从低分辨率到高分辨率的精准转换。 为了提高红外图像的分辨率,本段落提出了一种名为IEDSR(Enhanced Deep Residual Networks for Infrared Image Super-Resolution)的新网络模型。该模型在EDSR(Enhanced Deep Residual Networks for Single Image Super-Resolution)的基础上增加了池化层,从而避免了移除批正则化层可能带来的训练难题。此外,考虑到红外图像对比度低和纹理不明显的特点,在残差块中引入新的卷积层和激活函数,通过增加网络深度来扩大局部残差模块的感受野,有助于恢复图像的细节信息。最后采用增强预测算法优化重建后的图像,提高其精度。实验结果表明:本段落提出的算法在主观视觉效果及客观评价指标上均优于传统的红外图像重建方法,具有较高的实用价值。
  • 磁共振.zip
    优质
    本项目探索了利用深度学习技术提升磁共振成像质量的方法,专注于开发能够实现超高分辨率图像重建的新算法。通过创新的数据处理和模型架构设计,我们力求在保证扫描时间的同时,显著提高医学影像的细节表现力,为临床诊断提供更精确的信息支持。 本项目主要探讨“基于深度学习的磁共振超分辨率图像重建”技术,这是一个结合了人工智能、深度学习及Python编程的前沿课题,在医学成像领域尤其是磁共振成像(MRI)中具有重要意义。该技术致力于通过算法提升低分辨率影像至高清晰度水平,从而提高疾病早期诊断和治疗的效果。 在MRI超分辨率重建过程中,卷积神经网络(CNNs)因其强大的图像处理能力被广泛应用。项目中的关键知识点包括: 1. **卷积神经网络**:CNN的核心是卷积层与池化层,它们能够捕捉局部特征并进行下采样操作,在超分辨率任务中可能会使用到残差网络或生成对抗网络等结构来增强细节恢复效果。 2. **生成对抗网络(GANs)**:由两个部分组成——生成器和判别器。前者负责创造高分辨率图像,后者则区分真实与假造图象;二者通过竞争不断优化各自性能直至达到理想状态。 3. **损失函数的选择**:训练过程中选用适当的损失函数至关重要,比如均方误差(MSE)或结构相似性指数(SSIM),以衡量生成的图像与其对应的高分辨率版本之间的差异程度。 4. **数据预处理与增强**:在开始模型学习之前,需要对MRI影像进行归一化、去噪及配准等操作来提升训练效果;同时通过翻转、旋转和缩放等方式实施数据增强策略以提高模型的泛化能力。 5. **优化器选择与调整**:合理的优化算法(例如Adam或SGD)以及合适的学习率安排对于加快收敛速度并取得良好性能至关重要。 6. **后处理技术**:在完成训练之后,可能还需要进行额外的后期处理步骤来进一步改善重建图像的质量,如去除噪声和边缘平滑化等操作。 7. **Python编程与库的应用**:利用TensorFlow、Keras或PyTorch等深度学习框架以及Numpy、Pandas、Matplotlib等工具实现项目中的各项任务,并进行数据预处理及可视化工作。 本项目的最终目标是通过深度学习技术提高MRI图像的分辨率,从而帮助医生更准确地观察病灶并提升临床诊断效率。在实践中还需注意模型计算效率和内存占用问题以适应医疗设备硬件条件限制;同时确保所设计模型能够良好应对MRI影像特有的复杂组织纹理及信号强度变化等问题。
  • USRNet:展开(CVPR 2020,PyTorch
    优质
    USRNet是一种先进的图像超分辨率技术,利用深度学习和PyTorch框架,在CVPR 2020上展示,通过深度展开方法提升图像质量。 经典超分辨率(SISR)退化模型假设低分辨率(LR)图像为高分辨率(HR)图像的模糊、下采样以及加噪版本。从数学上讲,可以表示为: \[ I_{\text{LR}} = I_{\text{HR}} \ast h + n \] 其中 \(I_{\text{LR}}\) 是低分辨率图像,\(I_{\text{HR}}\) 是高分辨率图像,\(h\) 表示二维卷积中的模糊核。符号“\(\ast\)”表示卷积运算。下采样操作通常采用标准的倍数向下采样器来实现,即保留每个不同像素对应的左上角像素,并丢弃其他信号。 噪声 \(n\) 一般假设为加性高斯白噪声(AWGN),其强度由方差或噪声水平决定。通过设定适当的模糊核、比例因子和噪音参数,可以近似各种低分辨率图像的生成过程。这种方法在基于模型的方法中得到了广泛应用,尤其是在最大后验概率(MAP)框架下同时解决数据项与先验项的问题上取得了显著成果。
  • GUISCNN(含PSNR、SSIMMatlab源码)[4095期].zip
    优质
    本资源提供一种基于GUI的深度学习超分辨率SCNN图像重建方法,包含性能评估指标PSNR和SSIM,并附有完整Matlab源码。适合研究与应用开发使用。 在Matlab领域上传的视频均有对应的完整代码,并且这些代码都是可以运行并经过验证确认有效的,适合初学者使用。 1. 代码压缩包内容包括: - 主函数:main.m; - 其他调用函数文件;无需单独运行 - 运行结果效果图展示 2. 所需的Matlab版本为2019b。如果在运行过程中遇到问题,请根据错误提示进行修改,或者寻求帮助。 3. 如何操作: 步骤一:将所有文件放置于当前工作目录下; 步骤二:双击打开main.m文件; 步骤三:点击运行按钮,并等待程序执行完毕以获取结果; 4. 如果需要进一步的帮助或服务,可以联系博主进行咨询。 4.1 提供博客或者资源的完整代码 4.2 复现期刊论文或其他参考文献中的Matlab代码 4.3 根据需求定制Matlab程序 4.4 科研合作
  • SRCNN-CS_SRCNN彩色_彩色_Matlab__.zip
    优质
    本资源提供SRCNN-CS算法用于彩色图像超分辨率重建,包含Matlab代码与测试案例。适用于研究和开发彩色超分辨率技术。 SRCNN-CS_SRCNN彩色图像超分辨率重建技术采用MATLAB实现,适用于彩色超分辨率重建及超分辨重建领域。
  • 边缘增强
    优质
    本研究提出了一种基于边缘增强的深层网络模型,用于提高图像的分辨率。通过强化图像中的边缘信息,该模型能够生成更加清晰和细节丰富的高分辨率图像。 针对基于学习的图像超分辨率重建算法中存在的边缘信息丢失及视觉伪影等问题,本段落提出了一种基于边缘增强的深层网络模型来解决这些问题。 该方法首先通过预处理网络提取输入低分辨率图像的基本特征,然后将这些特征分别送入两条路径中。一条路径利用多层卷积操作生成高级特征,另一条路径则采用先进行卷积后使用反向卷积(与原卷积结构镜像)的方式重建图像边缘信息。 最后,通过支路连接技术融合这两条路径的结果,并将结果输入到一个最终的卷积层中以产生具有增强边缘效果的高分辨率图像。实验结果显示,在Set5、Set14和B100等常用测试集上放大三倍的情况下,该算法在峰值信噪比(PSNR)与结构相似度(SSIM)这两项评价指标上的表现分别达到了33.24 dB/0.9156、30.60 dB/0.8521和28.45dB/O.787 3,相比其他方法有显著提升。 实验结果表明,基于边缘增强的深层网络模型在重建图像时不仅有效改善了边缘信息的质量,在客观评价标准及主观视觉体验上也取得了明显的改进。
  • 技术研究
    优质
    本研究聚焦于利用深度学习算法提升医学影像的质量与细节,特别关注如何增强图像分辨率,为医疗诊断提供更精确的数据支持。 该工程旨在通过深度学习技术实现图像超分辨率重建,以获取更清晰的医学图像,并提供适合基于机器学习和深度学习模型分析的学习资料及详细程序说明书。