Advertisement

山东大学2019级智能班深度学习与神经网络复习

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本简介为山东大学2019级智能科学与技术专业学生关于深度学习与神经网络课程的复习资料汇总,涵盖知识点回顾、习题解析和项目实践等内容。 本段落探讨了深度学习中的损失函数与优化方法,并特别强调正则化技术在防止过拟合方面的作用。通过应用L1和L2正则化可以使得模型更加简洁有效,同时Dropout及批量归一化也是广泛采用的正则化手段。此外,在构建神经网络时选择合适的激活函数至关重要,ReLU便是其中一种常用的选择。反向传播算法则是训练过程中不可或缺的核心技术之一,它通过计算导数来更新模型参数以优化性能。文中还简要概述了一些常用的求导法则。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 2019
    优质
    本简介为山东大学2019级智能科学与技术专业学生关于深度学习与神经网络课程的复习资料汇总,涵盖知识点回顾、习题解析和项目实践等内容。 本段落探讨了深度学习中的损失函数与优化方法,并特别强调正则化技术在防止过拟合方面的作用。通过应用L1和L2正则化可以使得模型更加简洁有效,同时Dropout及批量归一化也是广泛采用的正则化手段。此外,在构建神经网络时选择合适的激活函数至关重要,ReLU便是其中一种常用的选择。反向传播算法则是训练过程中不可或缺的核心技术之一,它通过计算导数来更新模型参数以优化性能。文中还简要概述了一些常用的求导法则。
  • 机器.docx
    优质
    本文档探讨了机器学习的基础概念,并深入解析了深度学习及其核心组件——神经网络和深度神经网络的工作原理和发展现状。 1.1 机器学习算法 随着多年的发展,机器学习领域已经涌现出了多种多样的算法。例如支持向量机(SVM)、K近邻(KNN)、K均值聚类(K-Means)、随机森林、逻辑回归和神经网络等。 从这些例子可以看出,尽管神经网络在当前的机器学习中占据了一席之地,但它仅仅是众多算法之一。除了它之外,还有许多其他重要的技术被广泛使用。 1.2 机器学习分类 根据学习方式的不同,可以将机器学习分为有监督、无监督、半监督和强化学习四大类: - **有监督学习**:这种类型的学习涉及带有标签的数据集,在这些数据集中每个样本都包含特征X以及相应的输出Y。通过这种方式,算法能够从标记好的示例中进行训练,并逐步提高预测准确性。 - **无监督学习**:在这种情况下,提供给模型的是未标注的输入变量集合(即只有X),没有明确的目标或结果标签供参考。目标是让机器找出数据中的内在结构、模式或者群组等信息。 - **半监督学习**:该方法结合了有监督和无监督的特点,在训练过程中既利用带有标签的数据,也使用大量未标记的信息来改进模型性能。 - **强化学习**:这是一种通过试错机制进行的学习方式。在这种框架下,智能体(agent)执行操作并根据环境反馈获得奖励或惩罚作为指导信号,从而学会如何采取行动以最大化长期累积回报。 半监督方法的一个优点是它只需要少量的标注数据就能实现有效的训练,并且避免了完全依赖于无标签信息可能带来的不确定性问题。
  • N-BEATS-master.zip_人工//_Python__人工//_Python_
    优质
    N-BEATS-master 是一个使用Python编写的开源项目,专注于时间序列预测。该项目基于深度学习框架,应用了先进的神经网络架构N-BEATS,以实现高效的时间序列分析和预测能力。 N-BEATS是一种基于神经网络的单变量时间序列预测模型。其实现涉及使用深度学习技术来提高时间序列数据的预测精度。这种方法通过堆叠多个模块进行前向传播,每个模块包含一个逆向残差块和一个全连接层,用于捕捉复杂的时间依赖关系并生成未来值的精确预测。
  • 2020年指南
    优质
    本指南为准备山东大学2020年深度学习考试的学生提供全面的复习资料与策略建议,涵盖核心概念、算法实践及前沿技术动态。 本段落介绍了山东大学计算机学习人工智能实验班2018级深度学习与神经网络课程中的重点内容,包括超参数的设定、正则化的作用以及正则化参数λ的影响。此外,还介绍了Softmax函数的作用,将输出的分类得分转化为概率值。该文是山东大学2020年深度学习复习提纲的一部分。
  • (DNN)
    优质
    深度学习神经网络(DNN)是一种模仿人脑工作方式的人工智能技术,通过多层结构学习数据特征,广泛应用于图像识别、语音处理和自然语言理解等领域。 个人从网络收集资料,本资料共分为九个部分介绍深度神经网络。
  • Python:探索技术...
    优质
    《Python深度学习》一书带领读者深入浅出地理解并实践深度学习及神经网络技术,利用Python语言进行高效编程和模型构建。 探索先进的人工智能深度学习模型及其应用 通过使用流行的Python库如Keras、TensorFlow和PyTorch来研究先进的深度学习技术和它们在计算机视觉与自然语言处理(NLP)中的应用场景。 本书特色: - 建立神经网络及深度学习的坚实基础,利用Python相关库。 - 探索高级深度学习技术及其在计算视觉和NLP领域的应用。 - 学习如何使用强化学习使计算机能在复杂环境中导航,并理解支撑流行游戏如围棋、Atari 和Dota背后的先进算法。 随着人工智能在商业和消费者需求中的广泛应用,深度学习已经成为当今及未来市场需求的关键。本书旨在探索深度学习技术并培养读者的深度学习思维模式,以便将其应用于智能的人工智能项目中。 第二版将深入介绍深度学习的基础知识,包括深层神经网络及其训练方法,并利用高性能算法与流行Python框架进行实践操作。您还将了解不同的神经网络架构如卷积网络、递归网络和长短期记忆(LSTM)等,解决图像识别、自然语言处理及时间序列预测等问题。 本书最后将使读者掌握实用的深度学习知识并理解其实际应用案例。 - 掌握神经网络及其深度学习过程背后的数学理论 - 使用卷积网络与胶囊网络调查并解决问题中的计算机视觉挑战 - 通过变分自编码器和生成对抗性网路(GAN)解决生成任务 - 理解强化学习,并掌握代理在复杂环境下的行为模式 - 利用递归网络(LSTM, GRU)及注意模型完成复杂的自然语言处理任务 本书适合数据科学家、机器学习工程师以及深度学习的初学者,这些读者已经具备了基础的机器学习概念和一些使用Python编程的经验。同时建议有一定的数学背景并理解微积分与统计学的概念。
  • 人工材料
    优质
    本资料为山东大学学生在准备人工智能课程考试时整理的学习和复习资源,涵盖主要知识点与经典例题解析。 山东大学人工智能期末考试复习资料包括最后的重点文档,其中填空题基本全部包含在内,简答题也有几道题目涉及,计算题则提供三选一的选择,并且归结推理部分的第三个题目是原题。
  • Coursera 第一课:全部
    优质
    本课程为Coursera平台上的深度学习系列课程的第一部分,专注于介绍神经网络和深度学习的基础知识,并通过实践练习加深理解。 吴恩达在Coursera上的深度学习课程第一课介绍了神经网络和深度学习的基础知识。该课程的课后练习旨在帮助学生巩固所学内容,并通过实际操作加深理解。
  • 卷积——
    优质
    卷积神经网络(CNN)是深度学习中用于图像识别和处理的重要模型,通过多层卷积提取特征,广泛应用于计算机视觉领域。 卷积神经网络(CNN)是深度学习领域的重要组成部分,在图像识别和处理任务中表现出色。其主要特点是利用卷积层和池化层来提取并学习图像特征,并通过多层非线性变换实现复杂模式的识别。 1. **基础知识** - **二维互相关运算**:这是卷积神经网络的基础操作,输入数组与卷积核(也叫滤波器)进行相互作用。具体来说,卷积核在输入数组上滑动,在每个位置计算子区域乘积和。 - **二维卷积层**:该过程通过将输入数据与多个卷积核执行互相关运算,并加上偏置来生成输出特征图,表示特定空间维度上的特征信息。 - **感受野**:一个重要的概念是“感受野”,即单个神经元可以接收的局部区域。随着网络层次加深,每个元素的感受野增大,能够捕捉更广泛的输入数据模式。 - **卷积层超参数**:包括填充(padding)和步幅(stride),用于控制输出尺寸的一致性和移动速度;此外还有多个输入通道的概念,这允许处理多维图像,并通过1×1的卷积核调整通道数量。 2. **简洁实现** - 使用PyTorch中的`nn.Conv2d`可以轻松创建二维卷积层。该函数接受参数如输入和输出通道数、卷积核大小、步幅以及填充等。 - `forward()`方法接收四维张量作为输入(批量大小,通道数量,高度及宽度),并返回同样结构的张量但可能改变的是特征图的数量及其尺寸。 3. **池化操作** - 池化层用于减少计算复杂度和防止过拟合。它们通过对输入数据进行下采样来实现这一点。 - 最大池化选择窗口内的最大值,而平均池化则取窗口内所有值的均值得到输出;PyTorch中的`nn.MaxPool2d`能够执行这些操作。 4. **LeNet** - LeNet是早期用于手写数字识别的一个卷积神经网络架构。它由Yann LeCun提出,包含一系列卷积层、池化层和全连接层。 5. **常见CNN模型** - **AlexNet**:在ImageNet竞赛中取得突破性进展的深度学习模型,首次证明了深层结构在网络图像识别中的有效性。 - **VGG网络(Visual Geometry Group)**:以其深且窄的设计著称,大量使用3×3卷积核以增加网络深度和复杂度。 - **NiN (Network in Network)**:引入微小的全连接层来增强特征表达能力。 - **GoogLeNet (Inception Network)**:采用创新性的“inception”模块设计,允许不同大小的滤波器并行工作以提高计算效率和模型性能。 这些架构的发展推动了卷积神经网络的进步,并使其成为现代深度学习系统的核心组成部分。对于图像分类、目标检测、语义分割及图像生成等领域而言,理解和掌握CNN的基本原理与实现方式至关重要。