Advertisement

基于多粒度级联孤立森林的异常检测模型

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
简介:本文提出了一种创新的异常检测方法——基于多粒度级联孤立森林的模型。该模型通过多层次的数据分析和优化算法,显著提升了异常检测的准确性和效率。 孤立森林算法是一种基于隔离机制的异常检测方法,在实践中存在一些局限性:难以识别与轴平行的局部异常点,并且在处理高维数据中的异常情况时缺乏敏感性和稳定性。为解决这些问题,引入了随机超平面和多粒度扫描这两种改进策略。 首先,通过使用多个维度上的线性组合来简化隔离边界,从而有效地检测更复杂的模式。其次,为了提高模型的稳健性和准确性,在不同尺度上进行子采样,并针对每个样本集构建单独的孤立森林。这样可以形成一个层次化的集成学习系统,其中各个独立的森林共同投票决定最终结果。 实验结果显示:改进后的算法在处理复杂异常数据时表现出更高的稳定性;同时,通过多层次的学习模型也显著提高了高维空间中异常检测的效果和准确性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    简介:本文提出了一种创新的异常检测方法——基于多粒度级联孤立森林的模型。该模型通过多层次的数据分析和优化算法,显著提升了异常检测的准确性和效率。 孤立森林算法是一种基于隔离机制的异常检测方法,在实践中存在一些局限性:难以识别与轴平行的局部异常点,并且在处理高维数据中的异常情况时缺乏敏感性和稳定性。为解决这些问题,引入了随机超平面和多粒度扫描这两种改进策略。 首先,通过使用多个维度上的线性组合来简化隔离边界,从而有效地检测更复杂的模式。其次,为了提高模型的稳健性和准确性,在不同尺度上进行子采样,并针对每个样本集构建单独的孤立森林。这样可以形成一个层次化的集成学习系统,其中各个独立的森林共同投票决定最终结果。 实验结果显示:改进后的算法在处理复杂异常数据时表现出更高的稳定性;同时,通过多层次的学习模型也显著提高了高维空间中异常检测的效果和准确性。
  • 方法
    优质
    本研究提出了一种利用孤立森林算法进行高效异常值检测的方法,适用于大数据集中的离群点识别。 孤立森林异常检测(Outlier Detection with Isolation Forest)是一种有效的数据挖掘技术,用于识别数据集中的异常值或离群点。该方法通过构建隔离森林来随机且均匀地分割数据空间,并基于生成的树结构评估样本是否为异常。这种方法在处理高维和大规模数据时表现出色,能够有效地捕捉到潜在的数据分布偏差。 孤立森林算法的核心思想是利用随机划分策略直接将“正常”数据点与离群值区分开来,而不是像传统方法那样试图学习一个稠密区域的边界模型。通过这种方式,异常检测问题被转换为评估样本在树结构中的平均分割深度或路径长度的问题。由于异常值通常具有较少的数据邻近性,在随机划分下它们更有可能更快地被孤立出来。 这种方法不仅计算效率高、易于实现,并且对于不同类型的数据集(包括非线性和噪声数据)都有很好的鲁棒性,因此在许多实际应用中得到了广泛的应用和认可。
  • Sklearn和(IsolationForest)交易在机器学习中应用
    优质
    本研究利用Sklearn库中的Isolation Forest算法进行交易数据异常检测,旨在通过机器学习技术有效识别金融交易中的可疑行为。 异常检测在许多业务领域至关重要,尤其是在金融交易、在线活动及安全敏感操作方面。 我们可以采取系统化的方法来应对异常检测的挑战。首先,需要收集并准备准确一致的交易数据。接下来,从这些数据中识别出异常模式,并利用如隔离林等专门算法进行有效的异常检测。 所谓的交易异常检测就是寻找那些与正常情况不符或意外出现的交易行为和活动模式。这样的不寻常现象通常被称为离群值,它们显著偏离预期标准,可能暗示着违规或者欺诈的存在。如果你有兴趣了解如何在交易中识别这些异常状况,那么本段落将为你提供指导。通过阅读这篇文档,你将会学习到使用Python及机器学习技术来进行有效的交易异常检测的方法和步骤。
  • 算法数据与目标(含完整代码和数据)
    优质
    本项目运用孤立森林算法进行高效异常值检测,并扩展应用于目标识别任务。提供详尽代码及实验数据,助力研究与实践。 孤立森林(Isolation Forest)是一种用于异常检测的机器学习算法,在大数据集中的异常值识别方面表现尤为出色。本项目旨在基于孤立森林实现目标检测,并提供完整的代码与数据,使用户能够理解和应用该方法来发现异常目标。 孤立森林的核心思想借鉴了随机森林(Random Forest)的工作原理,通过构建决策树的方式来评估数据点的异常程度。正常的数据点因其符合整体分布规律,在被划分时通常需要较少的步骤就能独立出来,形成“较短”的路径;而偏离常规模式的异常数据,则往往需经历更多分裂才能单独区分,因此路径较长。基于此逻辑,计算每个数据点在树中的路径长度便可以用来衡量其异常程度。 与传统的目标检测方法如YOLO、SSD侧重于识别已知类别对象不同的是,在安全监控和工业质检等领域中应用广泛的孤立森林算法更专注于发现那些不符合正常行为模式的不寻常目标。 `mainiForest.m`很可能是该项目的核心文件,它调用其他辅助函数来完成训练与预测工作。而`IsolationTree.m`可能实现了单个决策树的具体构建过程——通过随机选择特征并分割节点的方式进行操作。“Measure_AUC.m”则用于计算曲线下面积(AUC),这是一种评估分类模型性能的重要指标,可以用来衡量孤立森林区分正常和异常数据的能力。 此外,“IsolationForest.m”,“IsolationMass.m”以及“IsoationEstimation.m”可能包含了算法的具体实现细节,包括构建整个森林、计算异常分数及进行异常估计等功能模块。项目中还包含了一个名为`异常数据实例3.0.xlsx`的实际数据集文件,其中不仅有正常样本也有用于测试的异常样本。 使用该项目时,首先需要导入提供的“异常数据实例3.0.xlsx”作为训练和验证的数据源;接着可以通过调用相关函数如`mainiForest.m`来进行预处理、模型训练以及预测操作。通过计算得到的各个数据点上的异常分数来识别潜在的目标对象,并根据实际需求调整算法参数,比如森林中树的数量或者样本大小等以优化检测效果。 总之,这个项目为理解和应用孤立森林提供了完整框架和实用资源,无论是学习还是在特定场景下使用都非常有价值。
  • MATLAB中程序
    优质
    本程序利用MATLAB实现孤立森林算法,用于高效异常值检测和数据聚类分析。适合大数据处理与机器学习研究。 iForest 具有线性时间复杂度,因此适用于包含海量数据的数据集。作为集成方法的一部分,树的数量越多,算法越稳定。由于每棵树都是独立生成的,可以在大规模分布式系统中部署以加速计算。
  • 【项目实战】用Python构建深神经网络gcForest()分类(应用医学诊断)
    优质
    本项目通过Python实现深度学习模型gcForest,用于构建复杂的数据分类器,在医学诊断领域展现其应用潜力与优势。 【项目实战】Python实现深度神经网络gcForest(多粒度级联森林)分类模型(医学诊断) 资料包括:数据、代码、文档及代码讲解。 1. 项目背景 2. 数据获取 3. 数据预处理 4. 探索性数据分析 5. 特征工程 6. 构建GCForest模型 7. 模型评估 8. 结论与展望
  • LSTM自编码器
    优质
    简介:本文提出了一种结合长短期记忆网络(LSTM)与自编码器的创新方法,专门用于复杂数据序列中的异常检测。通过深度学习技术优化模型性能,以识别并预测潜在的数据偏差或故障模式,在金融风控、系统监控等领域展现出广泛应用前景。 LSTM自编码器异常检测模型是一种利用长短期记忆网络的自编码器来识别数据中的异常模式的技术。这种模型能够有效地捕捉时间序列数据中的长期依赖关系,并通过学习正常行为的数据表示来进行异常检测。
  • 随机回归
    优质
    简介:本项目聚焦于通过Python编程语言构建随机森林回归模型,旨在利用集成学习方法提高预测准确性,适用于处理具有大量特征的数据集。 主要使用sklearn中的随机森林回归模型来对波士顿房价进行预测。
  • 学习用电
    优质
    本研究提出一种基于深度学习的方法来识别和分类电力系统的异常使用模式,旨在提升电网的安全性和效率。通过分析海量用户数据,模型能够自动发现潜在的用电异常行为,为故障预测、节能降耗及优化服务提供支持。 针对电力用户的异常用电行为,本段落提出了一种基于深度学习的用户异常用电模式检测模型。利用Tensor Flow框架构建了特征提取网络和多层特征匹配网络。通过长短期记忆(LSTM)特征提取网络,从大量时间序列数据中提取不同的序列特征;再借助全连接网络(FCN),进行多层特征匹配,完成对异常用电行为的识别与分析。实例表明,相比非深度学习检测模型以及传统的多层次LSTM分类模型,本研究提出的模型在准确性和鲁棒性方面表现更佳,并能更加有效地实现异常用电模式的检测任务。
  • 随机回归PM2.5浓分析
    优质
    本研究构建了一种基于随机森林回归算法的PM2.5浓度预测模型,并对其性能进行了深入分析。通过大量数据训练与验证,证明该模型在空气质量监测和预报中具有显著的应用价值。 为了应对神经网络算法在PM2.5浓度预测领域中存在的过拟合、结构复杂及学习效率低等问题,我们引入了随机森林回归(RFR)算法,并分析了包括气象条件、大气污染物浓度以及季节在内的共22项特征因素。通过优化参数组合,设计出了一种新的PM2.5浓度预测模型——RFRP模型。 为了验证该模型的有效性,收集并使用了西安市从2013年至2016年的历史气象数据进行实验分析。实验结果表明,RFRP模型不仅能准确地预测PM2.5的浓度水平,在保持较高精度的前提下还能显著提升运行效率。具体而言,其平均运行时间为0.281秒,仅为BP-NN(反向传播神经网络)预测模型所需时间的大约5.88%。