Advertisement

STL各容器性能的详细对比分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文深入探讨并比较了STL(标准模板库)中各种容器的特点与性能表现,为读者提供了详尽的数据支持和实用建议。 STL(Standard Template Library,标准模板库)是C++编程语言的一部分,它提供了一组高效、可重用的数据结构和算法。在这个场景下,我们主要关注STL中的容器,它们是用来存储和管理数据的主要工具。以下是几种常见容器的性能比较及其在特定操作下的行为和效率。 1. **vector**: - **内存分配**:vector通常连续地储存元素于内存中,因此读取速度快且访问效率高。当需要插入或删除元素时,如果容量不足,它会一次性分配更大的空间并移动所有元素,这比链表型容器更有效率。 - **写入性能**:向vector中写入40M的int变量仅用时5秒,表明其写入速度较快。 - **插入和删除**:在中间位置进行插入或删除操作需要移动大量元素,可能导致效率下降。 2. **deque**: - **内存分配**:deque(双端队列)类似于多个连续的小vector,提供快速的前端和后端访问,但不如vector那样完全连续。 - **写入性能**:向deque中写入40M的int变量耗时4秒,比vector稍慢,但仍快于其他容器。 - **移除操作**:从头部移除元素速度较快(2203毫秒),适合频繁在两端进行操作的情况。 3. **list**: - **内存分配**:list由链接节点组成,每个元素占用额外的内存来存储指针,导致较低的内存利用率。插入或删除时不会移动其他元素。 - **写入性能**:向list中写入40M的int变量耗时21秒,速度较慢是因为每个元素都需要单独分配内存。 - **插入和删除操作**:在中间位置进行插入或删除非常快,只需修改相邻节点指针;但在头部和尾部的操作相比deque要慢。 4. **set** 和 **map**: - **内存分配**:这两种关联容器基于红黑树实现,保证了元素的有序性。每个新元素的插入都会触发平衡调整操作。 - **写入性能**:向set或map中写入40M个int变量分别耗时137秒和136秒;这是因为每项插入操作都需要进行复杂的平衡处理。 - **内存碎片**:由于每个元素独立分配,可能会导致较高的内存碎片。 在选择STL容器时应考虑的因素包括: - 快速随机访问优先,则vector是最佳选项; - 频繁的前端和后端添加或删除操作适合deque; - 保持排序且频繁插入/删除则选用set或map(尽管其性能通常低于动态数组类容器)。 - 若在任意位置频繁进行插入与删除,list是一个好选择;但要注意它的内存利用率较低。 实际应用中应根据具体需求权衡这些因素,并采取相应的优化策略,如预分配内存和避免不必要的拷贝操作。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STL
    优质
    本文深入探讨并比较了STL(标准模板库)中各种容器的特点与性能表现,为读者提供了详尽的数据支持和实用建议。 STL(Standard Template Library,标准模板库)是C++编程语言的一部分,它提供了一组高效、可重用的数据结构和算法。在这个场景下,我们主要关注STL中的容器,它们是用来存储和管理数据的主要工具。以下是几种常见容器的性能比较及其在特定操作下的行为和效率。 1. **vector**: - **内存分配**:vector通常连续地储存元素于内存中,因此读取速度快且访问效率高。当需要插入或删除元素时,如果容量不足,它会一次性分配更大的空间并移动所有元素,这比链表型容器更有效率。 - **写入性能**:向vector中写入40M的int变量仅用时5秒,表明其写入速度较快。 - **插入和删除**:在中间位置进行插入或删除操作需要移动大量元素,可能导致效率下降。 2. **deque**: - **内存分配**:deque(双端队列)类似于多个连续的小vector,提供快速的前端和后端访问,但不如vector那样完全连续。 - **写入性能**:向deque中写入40M的int变量耗时4秒,比vector稍慢,但仍快于其他容器。 - **移除操作**:从头部移除元素速度较快(2203毫秒),适合频繁在两端进行操作的情况。 3. **list**: - **内存分配**:list由链接节点组成,每个元素占用额外的内存来存储指针,导致较低的内存利用率。插入或删除时不会移动其他元素。 - **写入性能**:向list中写入40M的int变量耗时21秒,速度较慢是因为每个元素都需要单独分配内存。 - **插入和删除操作**:在中间位置进行插入或删除非常快,只需修改相邻节点指针;但在头部和尾部的操作相比deque要慢。 4. **set** 和 **map**: - **内存分配**:这两种关联容器基于红黑树实现,保证了元素的有序性。每个新元素的插入都会触发平衡调整操作。 - **写入性能**:向set或map中写入40M个int变量分别耗时137秒和136秒;这是因为每项插入操作都需要进行复杂的平衡处理。 - **内存碎片**:由于每个元素独立分配,可能会导致较高的内存碎片。 在选择STL容器时应考虑的因素包括: - 快速随机访问优先,则vector是最佳选项; - 频繁的前端和后端添加或删除操作适合deque; - 保持排序且频繁插入/删除则选用set或map(尽管其性能通常低于动态数组类容器)。 - 若在任意位置频繁进行插入与删除,list是一个好选择;但要注意它的内存利用率较低。 实际应用中应根据具体需求权衡这些因素,并采取相应的优化策略,如预分配内存和避免不必要的拷贝操作。
  • C++编译
    优质
    本研究深入探讨并比较了主流C++编译器在代码优化、构建速度及内存使用等方面的性能差异,旨在为开发者提供选择最佳工具的依据。 C++中的编译器种类繁多,各有特点。目前流行的几种包括: 在Windows环境下编程开发,我通常使用Visual C++(VC)进行编译工作,因为微软作为业界巨头的产品,在性能与功能方面自然无可挑剔。不过它的缺点是编译速度较慢。因此,在编写小型程序时我会选择Lcc C/C++ 编译器,它不仅拥有不错的性能而且具有极快的编译效率。 此外,对于编程新手而言,VC可能不是最佳的选择,因为MFC(Microsoft Foundation Classes)将所有执行机制都封装在类中,初学者可能会对其代码感到困惑。相比之下,Lcc C/C++是一个较为理想的学习工具, 它采用标准SDK编写程序, 更适合入门级学习者使用。 至于Linux和DOS环境下的编译器流行情况,则需根据具体需求和个人偏好来选择合适的选项。
  • 种排序算法实现与
    优质
    本项目深入探讨了多种经典排序算法(如冒泡、快速、归并等),通过代码实现和实验测试,全面比较它们在不同数据规模下的效率与稳定性。 分别实现插入排序、冒泡排序、堆排序、合并排序以及快速排序算法,并以不同规模(100, 1000, 2000, 5000, 10000, 和 100000)的随机数作为测试数据集。在每个实现中设置比较操作计数器,用以验证随着测试数据规模增加时各算法比较次数的变化趋势。 对于每一个测试数据集合,需要评估这些排序方法之间的性能差异,并利用软件工具绘制出它们之间性能对比的曲线图。 展示结果之前,请详细说明以下内容: - 测试环境:包括使用的编程语言、开发平台等信息; - 数据规模和形式:列出所用的数据集大小及其随机生成方式; - 测试方法:描述如何进行测试,例如使用特定工具或脚本执行排序算法并记录比较次数; - 性能指标及结果采集方式:明确性能评估标准(如时间复杂度、空间复杂度等),以及具体数据的收集过程和分析方法。
  • 解读C++ STL中常用
    优质
    本文章将深入解析C++标准模板库(STL)中的常用数据容器,包括vector、list、set等,并探讨它们的特点和使用场景。 在C++编程中,STL(Standard Template Library)是不可或缺的一部分,它提供了大量高效的数据结构和算法。本段落将深入解析C++ STL中的常用容器类型,包括顺序性容器、关联容器以及容器适配器。 1. 顺序性容器 - vector:vector是一种动态数组,在内存中存储为连续的块,支持快速随机访问。然而由于插入或删除操作可能涉及元素移动,效率相对较低。当需要扩展容量时,vector会重新分配更大的内存,并复制原有数据到新位置,这在处理大量对象尤其是复杂类型的数据时可能会导致性能下降。为了避免内存泄露问题,通常使用swap函数来清空vector。 - deque:deque(双端队列)同样支持快速随机访问,但它可以在两端进行高效的插入和删除操作。deque的存储方式是通过多个小块连续内存组成,并用指针链接起来,这使得它的空间分配速度较快,在重新分配后无需复制元素。 - list:list是一种双向链表结构,不保证内存连续性,因此对于随机访问效率不高;但它在执行插入和删除操作时非常高效。仅需调整指向相邻节点的指针即可完成操作。如果应用程序中频繁进行插入或删除操作,并且对随机访问的需求不大,则使用list是一个理想选择。 2. 关联容器 - map:map是一种关联式容器,通过键(key)映射值(value),实现键值对存储。它基于红黑树结构来自动排序所有元素,因此其内部数据总是有序的。尽管每个元素都额外包含了用于维护红黑树的信息,但map在插入和删除操作方面表现出色。 - set:set也采用红黑树作为基础,并且其中的每一个元素都是唯一的、按升序排列的。由于需要保持排序性,修改set中的任何元素必须先将其移除然后重新添加进去以维持原有顺序关系。这使得直接对已有的集合成员进行更新变得复杂。 3. 容器适配器 - queue:queue是一个基于其他容器(如deque或list)构建的适应器,实现了先进先出(FIFO)的行为模式,通常用于模拟队列操作场景。 - stack:stack也是一种通过底层容器实现的适应器,模仿了后进先出(LIFO)的数据结构特性。这与物理堆栈的操作方式非常相似。 选择合适的STL容器时需考虑应用需求中的数据访问模式、是否需要保持顺序性以及插入删除频率等因素。例如,在处理队列相关逻辑时可以选择queue;而在实现类似堆栈功能的应用场景中,则可以采用stack作为解决方案的一部分。掌握这些不同类型的容器特性及其适用范围,有助于提高C++编程的效率和代码质量。
  • Jeson产品
    优质
    本文章将对Jeson产品进行详细的性能对比分析,通过多维度的数据和测试结果,旨在帮助消费者了解不同型号之间的差异,并做出明智的选择。 以下是针对Jetson Nano、TX2 NX 、TX2 4GB、TX2、TX2i、Jetson Xavier NX 16GB、Jetson Xavier NX、Jetson AGX Xavier 64GB、Jetson AGX Xavier、Jetson AGX Xavier 工业级、Jetson Orin Nano 4GB、Jetson Orin Nano 8GB、Jetson Orin NX 8GB、Jetson Orin NX 16GB、Jetson Orin AGX 32GB和Jetson Orin AGX 64GB模组的AI性能、GPU、CPU频率及接口等相关参数进行对比分析的内容。
  • ModelSim版本说明.pdf
    优质
    《ModelSim各版本详细对比说明》是一份全面解析不同版本ModelSim工具差异的专业文档,帮助用户了解功能更新和优化情况。 ModelSim不同发行版本的详细比较说明。
  • MySQL与Oracle.docx
    优质
    本文档深入探讨了MySQL和Oracle两大数据库系统之间的性能差异,通过详实的数据对比为技术决策者提供参考依据。 本段落档《mysql和Oracle性能比较.docx》旨在对比MySQL与Oracle数据库的性能差异,探讨不同场景下的适用性及优缺点。通过详细的测试数据和分析结果为读者提供参考依据,帮助技术开发者或管理人员在选择数据库系统时作出更为明智的选择。文档内容涵盖了两个系统的查询效率、并发处理能力以及存储管理等方面的具体比较,并结合实际案例进行了深入浅出的说明与解释。
  • 四种卡尔曼滤波
    优质
    本文对比分析了四种不同类型的卡尔曼滤波器在多种应用场景下的性能表现,旨在为实际工程选择最优算法提供参考依据。 本段落对比了四种常见的工程用滤波算法在视觉测量方面的性能:扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)、基于统计矩的扩展卡尔曼滤波(SREKF)以及基于统计矩的无迹卡尔曼滤波(SRUKF)。
  • FLASH、EEPROM和FRAM.docx
    优质
    本文档深入分析并比较了三种非挥发性存储器——Flash、EEPROM与FRAM的技术特点及应用场景,旨在帮助读者了解它们各自的优缺点。 本段落详细分析了FLASH、EEPROM和FRAM各自的特点及优缺点,并介绍了市面上常见的几种存储芯片,以帮助读者选择适合自己需求的存储解决方案。
  • LMS和RLS算法
    优质
    本文对LMS(Least Mean Squares)与RLS(Recursive Least Squares)两种自适应滤波算法进行了深入探讨,并对其在不同场景下的性能表现进行了系统性的比较分析。通过理论推导及仿真测试,揭示了两者各自的优劣特性及其适用范围,为实际工程应用中的选择提供了重要参考依据。 本段落对工程中常用的两种算法进行了性能分析比较,旨在为合理选择提供参考依据,并对实际应用具有指导意义。同时,代码具备良好的可移植性。