Advertisement

STM32串口数据收发

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本教程详细介绍如何使用STM32微控制器进行串行通信的数据发送与接收,涵盖配置步骤、代码示例及常见问题解答。 对STM32的USART进行初始化,并使能接收中断。当PC机发送数据时,会触发USART接收中断,在接收到数据后通过函数将这些数据发送回PC机上。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32
    优质
    本教程详细介绍如何使用STM32微控制器进行串行通信的数据发送与接收,涵盖配置步骤、代码示例及常见问题解答。 对STM32的USART进行初始化,并使能接收中断。当PC机发送数据时,会触发USART接收中断,在接收到数据后通过函数将这些数据发送回PC机上。
  • STM32 USART 送与接
    优质
    本教程详细介绍如何使用STM32微控制器进行USART串行通信,包括配置步骤及代码示例,帮助开发者掌握数据发送和接收技巧。 STM32 USART串口可以用来发送和接收数据。
  • MCGS.rar
    优质
    该资源包含使用MCGS组态软件进行串口数据传输的教程和示例程序,适用于需要通过串行通信接口交换数据的工业控制项目。 1. 工程已通过测试可运行。 2. 内附串口数据收发驱动、测试例程、教程以及串口调试助手。
  • STM32通过并解析HEX
    优质
    本项目介绍如何使用STM32微控制器通过串行通信接口接收、发送及解析HEX格式的数据包。详细讲解了协议处理与硬件配置方法。 STM32串口收发解析HEX数据帧。
  • STM32不定长
    优质
    本项目专注于使用STM32微控制器处理不定长度的串行通信数据,展示高效的数据接收与解析技术。 在使用STM32F407ZGT6芯片并结合Hal库(通过Cube配置)的情况下,可以通过两种方法实现串口接收不定长数据并发送接收到的数据: 1. 方法一:采用串口空闲中断与串口接收中断相结合的方式。 2. 方法二:利用串口空闲中断和DMA方式来完成相同的功能。
  • STM32不定长
    优质
    本项目介绍如何使用STM32微控制器实现接收并处理不定长度的数据帧通过串行通信接口。 使用STM32L475源码结合ST官方手册进行开发,并通过Keil和STM32CubeMX工具支持。详细内容参见相关文档或教程。
  • STM32通信.rar
    优质
    本资源包含基于STM32微控制器的串口通信实现方法,详细介绍了如何进行数据的发送与接收,并提供相关代码示例和配置说明。适合嵌入式开发学习参考。 这段文字描述了一个包含STM32串口收发数据测试代码的资源。其中包含了发送和接收两套程序,并且有详细的注释。这些代码是基于STM32F407系列开发的,用户可以下载后自行移植使用。
  • STM32 1 自
    优质
    简介:本文介绍了如何在STM32微控制器上实现串口1(USART1)的自发自收功能,适用于进行通信调试或性能测试。 STM32串口1自发自收是嵌入式开发中的常见应用场景,主要涉及STM32F10X系列芯片的串行通信功能。本段落将深入探讨如何配置和使用STM32F103的串口1进行数据发送与接收。 STM32F103是一款基于ARM Cortex-M3内核的微控制器,广泛应用于各种嵌入式系统设计中。它具有多个串行通信接口,包括USART(通用同步异步收发传输器)和UART(通用异步收发传输器),其中串口1(USART1)通常用于高速数据传输。 配置STM32F103的串口1需要完成以下步骤: 1. **时钟配置**:启用相应的时钟源,通过RCC寄存器开启串口1的时钟。例如,使用`RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);`来打开USART1的时钟。 2. **数据帧格式设置**:定义数据帧的格式,包括数据位数、停止位数和奇偶校验位等。这可以通过`USART_Init()`函数完成,例如设定为8位数据、1个停止位、无校验位的配置: ```c USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; ``` 3. **波特率配置**:设置串口通信的速度,例如将波特率设为9600bps: ```c USART_InitStructure.USART_BaudRate = 9600; ``` 4. **串口模式设置**:根据需求选择工作模式。如需自发自收模式,则配置如下: ```c USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; ``` 5. **启动串口**:完成初始化后,使用`USART_Init(&USART_InitStructure);`来启动串口,并使能接收和发送中断: ```c USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); USART_ITConfig(USART1, USART_IT_TC, ENABLE); ``` 6. **中断配置**:定义串口1的中断服务函数。当接收到数据(RXNE中断)或发送完成(TC中断)时,这些函数会被调用。例如: ```c void USART1_IRQHandler(void) { if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { received_data = USART_ReceiveData(USART1); 处理接收到的数据 } else if(USART_GetITStatus(USART1, USART_IT_TC) != RESET) { 发送完成,可以开始发送新的数据 } } ``` 7. **主函数中的应用**:在主函数中设置一个循环来向串口1持续发送数据,并通过中断服务函数处理接收到的数据。例如: ```c USART_SendData(USART1, data_to_send); ``` 以上步骤完成后,STM32F103的串口1将能够实现自发自收功能。在实际项目中,还需要考虑错误处理、数据缓冲区管理及多任务调度等问题以确保通信稳定性和效率。实验文件中的具体代码和测试案例可以作为学习参考实例。
  • STM32 通过DMA方式在1和2进行
    优质
    本项目介绍如何利用STM32微控制器的DMA功能,在串口1和串口2之间实现高效的数据传输,无需CPU干预。 使用STM32的串口1和串口2通过DMA方式进行数据收发。采用定时器定期查询接收到的数据,并在串口中断发生(即数据空闲中断)时,将数据拷贝到缓冲区供其他程序处理。这种方法可以接收任意大小的数据包并且占用CPU时间极少,在波特率较高时效果尤为显著。
  • BLE蓝牙
    优质
    本项目实现通过BLE蓝牙技术进行串口数据传输,适用于无线通信、物联网设备连接等场景,支持数据发送与接收功能。 低功耗BLE蓝牙串口收发数据