Advertisement

基于PSO-CNN-LSTM的预测算法,通过优化隐含层单元数量和初始学习率提高预测精度,优于传统CNN-LSTM模型。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种改进的PSO-CNN-LSTM预测算法,通过调整网络参数显著提升了预测精度,相较于传统的CNN-LSTM架构表现出更优性能。 PSO-CNN-LSTM算法通过粒子群优化CNN_LSTM网络的隐含层单元个数和初始学习率来提高预测精度,其效果优于传统的CNN-LSTM方法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PSO-CNN-LSTMCNN-LSTM
    优质
    本研究提出了一种改进的PSO-CNN-LSTM预测算法,通过调整网络参数显著提升了预测精度,相较于传统的CNN-LSTM架构表现出更优性能。 PSO-CNN-LSTM算法通过粒子群优化CNN_LSTM网络的隐含层单元个数和初始学习率来提高预测精度,其效果优于传统的CNN-LSTM方法。
  • SSA-CNN-LSTM网络超参以实现
    优质
    本研究提出了一种结合SSA算法与CNN-LSTM模型的创新方法,旨在通过优化超参数来提高时间序列预测的准确性。该工作对于提升复杂数据模式下的预测能力具有重要意义。 SSA-CNN-LSTM网络通过超参数优化实现高精度预测。该方法结合麻雀搜索算法来优化CNN-LSTM神经网络的超参数,以提高模型的预测准确性。研究表明,这种组合技术能够显著提升预测效果,并在实际应用中展现出良好的性能表现。 关键词:SSA;CNN-LSTM;麻雀搜索算法;超参数优化;高精度预测
  • LSTMCNN-LSTMPSO-LSTMPSO-CNN-LSTM在光伏功对比分析
    优质
    本文深入探讨了LSTM、CNN-LSTM、PSO-LSTM以及PSO-CNN-LSTM四种模型在光伏功率预测领域的应用效果,通过对比分析各模型的优缺点,为选择最优预测模型提供了参考依据。 本段落对比分析了基于LSTM、CNN-LSTM、PSO-LSTM以及PSO-CNN-LSTM算法的光伏功率预测性能,并通过误差评价指标(RMSE、MSE、MAE和MAPE)进行评估。 具体结果如下: - LSTM预测结果:RMSE = 8.2496,MSE = 68.0566,MAE = 5.1832,MAPE = 0.29202 - CNN-LSTM预测结果:RMSE = 0.98212,MSE = 0.96457,MAE = 0.72943,MAPE = 0.039879 - PSO-CNN-LSTM预测结果:RMSE = 0.68696,MSE = 0.32698,MAE = 0.66369,MAPE = 0.019963 通过上述误差评价指标可以看出,PSO-CNN-LSTM算法在光伏功率预测中表现最优。
  • 不同在光伏功误差分析:LSTMCNN-LSTMPSO-LSTMPSO-CNN-LSTM比较
    优质
    本文对比了LSTM、CNN-LSTM、PSO-LSTM和PSO-CNN-LSTM四种模型在光伏功率预测中的表现,深入分析了各自产生的误差原因。 本段落对比分析了基于LSTM(长短期记忆网络)、CNN-LSTM(卷积神经网络与长短期记忆网络结合)、PSO-LSTM(粒子群优化算法与LSTM结合)以及PSO-CNN-LSTM(粒子群优化算法与CNN-LSTM结合)的光伏功率预测算法在误差评价指标上的差异。具体而言,这些评价指标包括均方根误差(RMSE)、平均平方误差(MSE)、平均绝对误差(MAE)和平均相对百分比误差(MAPE),用于评估各模型的精度。 LSTM预测结果如下: - RMSE = 8.2496 - MSE = 68.0566 - MAE = 5.1832 - MAPE = 0.29202 CNN-LSTM预测的结果为: - RMSE = 0.98212 - MSE = 0.96457 - MAE = 0.72943 - MAPE = 0.039879 最后,PSO-CNN-LSTM算法的预测结果如下: - RMSE = 0.68696 - MSE = 0.32698 - MAE = 0.66369 - MAPE = 0.019963 通过上述数据对比,可以看出PSO-CNN-LSTM算法在光伏功率预测中的误差评价指标表现最优。
  • BayesCNN-LSTM回归Matlab源码及据)
    优质
    本研究提出了一种结合Bayes优化与CNN-LSTM架构的高效时间序列回归预测模型。通过精细调整网络参数,该模型在多个数据集上展现出优越性能,并附有实用的Matlab实现代码和相关数据资源。 基于贝叶斯优化的卷积神经网络-长短期记忆网络(CNN-LSTM)回归预测模型采用多输入单输出结构。该模型通过优化学习率、隐含层节点数以及正则化参数来提升性能。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量高且易于修改以适应不同数据集的需求。运行环境要求MATLAB 2020b及以上版本。
  • PSOLSTM MATLAB代码
    优质
    本项目提供了一种利用粒子群优化(PSO)算法对长短期记忆网络(LSTM)进行参数调优的方法,并附有相关MATLAB实现代码。 使用PSO优化LSTM的初始学习率、隐含层单元数、迭代次数以及最小包尺寸数。训练环境为Matlab2017至2022版本,在GPU或CPU上均可设置。本程序经过验证,确保有效,旨在帮助科研人员节省时间。
  • CNNLSTM短时交
    优质
    本研究提出了一种结合卷积神经网络(CNN)与长短期记忆网络(LSTM)的模型,旨在提升短时交通流量预测精度,为智能交通系统提供有力支持。 基于CNN+LSTM的短时交通流量预测方法探讨了如何利用卷积神经网络(CNN)与长短期记忆网络(LSTM)结合的技术手段来提高对城市道路交通量短期内变化趋势的准确预判能力,为智能交通系统的设计和优化提供了新的思路。
  • CNN-LSTM台风生成
    优质
    本研究提出了一种结合卷积神经网络与长短期记忆网络的创新模型,用于精确预测台风的生成过程。通过分析大量气象数据,该模型能够有效捕捉时空变化特征,为防灾减灾提供科学依据。 台风是一种极端天气现象,在每年夏季期间会对沿海城市的经济造成严重影响。准确预测台风的生成及其强度对于及时发布预警至关重要。尽管传统的基于流体力学理论的数值预报模型在一定程度上能够进行预测,但它们难以精确地评估台风的实际强度。一些研究试图采用机器学习技术来改进台风形成的预测及强度估计,然而这些方法并未充分考虑气象变量之间的时空联系。 在此背景下,我们提出了一种结合卷积神经网络(CNN)和长短期记忆模型(LSTM)的混合架构——即CNN-LSTM模型,以捕捉大气与海洋参数在空间维度上的相互作用以及台风路径中特征的时间序列变化。我们的方法利用了3D卷积神经网络来分析三维气象数据的空间结构,并通过2D卷积神经网络识别二维平面上的数据模式;同时运用LSTM架构处理时间维度的信息。 经过一系列实验验证,我们所提出的CNN-LSTM混合模型在三个不同的数据集上均表现出色,优于包括官方组织常用的传统数值预测方法、统计学预测手段以及基于机器学习的现有技术。
  • CNN-LSTM.zip
    优质
    本项目提供了一个基于CNN与LSTM结合的深度学习框架,旨在优化目标检测任务。通过利用卷积神经网络提取特征和长短期记忆网络处理序列信息,该模型在多个数据集上展现了优越性能。 项目工程资源经过严格测试后才上传,并且可以直接运行成功且功能正常。这些资源可以轻松复制并复刻,在拿到资料包之后能够很容易地再现同样的项目成果。本人拥有丰富的系统开发经验(全栈开发),如果有任何使用问题,欢迎随时联系我,我会及时为您解答和提供帮助。 【资源内容】:具体项目的详细信息可以在本页面下方查看“资源详情”,包括完整的源码、工程文件以及相关说明等资料。如果非VIP用户想要获取这些资源,请通过私信的方式与我取得联系。 【本人专注IT领域】:如果有任何使用问题,欢迎随时联系我,我会尽快为您解答,并在第一时间提供必要的帮助。 【附带支持】:如果您还需要相关的开发工具、学习材料等等的支持,我也将乐意为您提供资料和指导,鼓励您不断进步和发展技能。 【适用范围】:这些项目可以在多种场景中应用,包括但不限于项目设计、课程作业、毕业设计以及各种学科竞赛或比赛等。此外,在初期的项目立项阶段或者作为个人技术练习时也十分有用。 您可以参考并复制这个优质项目,也可以在此基础上开发更多的功能和特性。 本资源仅供开源学习和技术交流使用,不得用于商业用途,请使用者自行承担相应后果。部分字体及插图可能来源于网络;如果涉及侵权问题,请联系我删除相关材料,本人不对所涉及的版权或内容负责。收取的费用仅是为了补偿整理收集资料所需的时间成本。
  • MATLABCNN-LSTM在风电功应用
    优质
    本研究探讨了利用MATLAB平台开发的CNN-LSTM混合深度学习架构,在风电功率预测领域内的高效应用。通过结合卷积神经网络(CNN)和长短期记忆网络(LSTM),该模型显著提升了预测精度,为可再生能源的有效管理提供了有力工具。 本段落介绍了利用MATLAB实现的CNN-LSTM深度学习模型在风电功率时间序列预测中的应用。该模型结合了卷积神经网络(CNN)提取局部特征的能力与长短期记忆网络(LSTM)捕捉长时间依赖性的优势,有效解决了风电功率不确定性及随机性带来的挑战,并提出了一种高精度的预测方法。文章详细探讨了项目的背景、目标、所面临的技术难题及其创新之处,并提供了模型构建流程和详细的代码实现说明。此外,还通过实际预测效果展示了该模型的有效性和准确性。 本段落适合电力系统管理、数据分析以及机器学习领域的研究人员阅读,尤其是那些具备深度学习经验的数据科学家和技术开发者。项目的主要应用场景及目标包括:①提高风电功率的预测精度,从而优化电力系统的规划;②帮助风力发电厂实现更有效的功率控制和调度;③为新能源比例分配分析及应急方案制定提供决策支持。 本段落附带完整的MATLAB代码示例与实际数据集,便于读者快速搭建并测试模型。