Advertisement

【国外开源项目】基于Arduino Mega的Nunchuk控制机器人手臂设计方案及电路图

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目介绍了一种利用Arduino Mega和Wii Nunchuk设计并操控机器人手臂的方法,并附有详细的电路图,适合硬件开发爱好者参考。 机械臂非常出色!它们在世界各地的工厂中广泛应用,在焊接及搬运物品方面表现出色。此外,机械臂还能应用于太空探索、海底遥控车辆以及医疗领域等多种场景。现在,我们有机会自己动手制作低成本的机械臂了!或许它不仅能帮助你完成工作,甚至可能带来一些意想不到的乐趣或挑战! 本教程将向您展示如何安装机器人手臂,并使用Arduino Mega进行编程控制。在该项目中,我尝试了一种新的操控方式:利用Nintendo Nunchuk控制器来操作机器人手臂。Nunchuk不仅价格亲民、易于获取,还内置了多种传感器。 项目所需的工具和材料如下: - 烙铁及电线 - 收缩管 - 螺丝刀 机械臂组件包括: - 6轴桌面机器人手臂套件:该套装已经包含多个部件,并且组装简便可靠。 - 12V电源(至少2A) - Nintendo Nunchuk控制器,用于控制机器人手臂 - 四芯公接线 - Arduino Mega板卡。需要注意的是,我所使用的机械臂套件中已配备了一块Arduino Mega板及相应的配套组件。 Sain Smart的6轴桌面支臂套装包含以下部件: - Arduino Mega 2560 R3控制板屏蔽 - NRF24L01+无线收发器模块 - MPU6050三轴陀螺仪和加速度计传感器组合 - 多个螺丝、螺母及其他安装件 如果您不使用该套件,也可以选择其他机器人手臂配置或自行设计。例如,您可以通过3D打印来制作一些独特的项目。 详细组装步骤请参阅附件内容!

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Arduino MegaNunchuk
    优质
    本项目介绍了一种利用Arduino Mega和Wii Nunchuk设计并操控机器人手臂的方法,并附有详细的电路图,适合硬件开发爱好者参考。 机械臂非常出色!它们在世界各地的工厂中广泛应用,在焊接及搬运物品方面表现出色。此外,机械臂还能应用于太空探索、海底遥控车辆以及医疗领域等多种场景。现在,我们有机会自己动手制作低成本的机械臂了!或许它不仅能帮助你完成工作,甚至可能带来一些意想不到的乐趣或挑战! 本教程将向您展示如何安装机器人手臂,并使用Arduino Mega进行编程控制。在该项目中,我尝试了一种新的操控方式:利用Nintendo Nunchuk控制器来操作机器人手臂。Nunchuk不仅价格亲民、易于获取,还内置了多种传感器。 项目所需的工具和材料如下: - 烙铁及电线 - 收缩管 - 螺丝刀 机械臂组件包括: - 6轴桌面机器人手臂套件:该套装已经包含多个部件,并且组装简便可靠。 - 12V电源(至少2A) - Nintendo Nunchuk控制器,用于控制机器人手臂 - 四芯公接线 - Arduino Mega板卡。需要注意的是,我所使用的机械臂套件中已配备了一块Arduino Mega板及相应的配套组件。 Sain Smart的6轴桌面支臂套装包含以下部件: - Arduino Mega 2560 R3控制板屏蔽 - NRF24L01+无线收发器模块 - MPU6050三轴陀螺仪和加速度计传感器组合 - 多个螺丝、螺母及其他安装件 如果您不使用该套件,也可以选择其他机器人手臂配置或自行设计。例如,您可以通过3D打印来制作一些独特的项目。 详细组装步骤请参阅附件内容!
  • Arduino DIY
    优质
    本项目介绍了一种使用Arduino的手势控制系统来操作DIY机器人手臂的方法,通过简单的电路设计和编程实现对机械臂的动作控制。 MARK 1是一款可编程的Arduino机器人手臂,并且可以通过手势进行控制。它的硬件组件包括:一个Arduino UNO、六个MG996R伺服马达、一个5V电池组、具有I2C接口的PCA9685八通道驱动器,比例阀控制器,两个HC-05蓝牙模块,一块A4988步进电机驱动板,一个NEMA-17步进电机,一块面包板(通用),一个六自由度惯性测量单元(IMU),以及一个Arduino Nano R3、柔性传感器等。此外还需要一些手动工具和一台3D打印机来完成组装。 按照钢铁侠系列的命名规则,每次迭代都会以Mark为前缀进行编号,这款原型将被命名为MARK1。未来还会有更多的版本出现,在保持原始机械臂功能的基础上不断优化改进。 在本教程中,我们将使用机器人手套构建一个由手势控制的六轴机器人手臂。通过模仿自然的手势动作如捏手或向左旋转手腕等来实现对机器人的远程操控,例如可以用来打开/关闭或者左右转动机械臂等操作。实际上这是一项完全手动控制的操作。 MARK 1的主要功能包括: - 具备六个自由度的全方位运动能力 - 可以通过手势进行实时编程和控制 - 支持无线多范围内的遥控操作 - 能够承载600克重量(最大负载为一公斤)。
  • Android和Arduino:自智能
    优质
    本项目是一款基于Android与Arduino平台开发的开源智能手表电路设计。它提供了一种低成本、可定制化的方案,适合DIY爱好者及硬件开发者尝试制作个性化智能穿戴设备。 在电路城上看到了一些非常有趣的可穿戴智能手表设计,例如低功耗计步器(智能手表)以及基于PIC24F单片机的智能手表,于是决定打造一个自己的智能手表项目。这个DIY的智能手表是基于Android和Arduino开发板,并且所有软硬件设计都是开源的。 值得一提的是,这款智能手表已经支持u8glib库了,这意味着你可以选择任何想要使用的屏幕(包括OLED),并且可以减少屏幕占用的RAM内存空间。组装整个系统的硬件结构连接图如下所示:按钮连接方式如图中所述,请注意这里需要用到一个10 kΩ电阻。 此外还提供了一个智能手表工作过程演示视频来展示其功能和操作流程。
  • 部动作
    优质
    本项目专注于开发一种创新的手势识别系统,用于精确操控机器人手臂。通过对手部动作进行智能解析与响应,旨在提升人机交互体验和效率。电路设计集成了先进的传感器技术和微处理器,确保了系统的高灵敏度与稳定性。 机械臂可以通过包含IMU(MPU6050)和柔性传感器的手套进行无线控制。硬件组件包括:SG90微伺服电机4个、机器人手臂套件1套、弯曲/弯曲传感器1个、DFRobot 6 DOF传感器 - MPU6050 1个、SparkFun Arduino Pro Mini 328 - 5V / 16MHz 1片、Arduino UNO和Genuino UNO各一片,NRF24L01分线板两块。发射器电路由nRF24L01分线板和Arduino Pro Mini供电,并连接到手套上。该电路还包含IMU及柔性传感器。 对于这个项目,使用的DIY柔性传感器在管的两端含有光发射器与接收器。当管弯曲时,光接收器接收到较少的光线,从而检测出弯曲动作。MPU6050 IMU 用于识别手腕转动的动作,并通过nRF24L01收发器将这些运动数据发送给接收电路。 在接收端,电路会对接收到的数据进行解码并控制四个伺服电机驱动的机械臂作出相应移动。本项目使用的机械臂是MeArm型号。
  • Arduino Mega8x8x8 LED立PCB
    优质
    本项目提供了一套基于Arduino Mega控制的8x8x8 LED立方体电路设计方案和PCB文件,旨在为LED爱好者与工程师们提供一个可自由修改和二次开发的平台。 基于Arduino Mega的8×8×8 LED立方体项目非常有趣。这个项目受到一位朋友的启发,并在此基础上添加了新功能。我将所有组件焊接到电路板上后,将其连接到Arduino Mega开发板并上传代码,随后LED立方体会显示代码中包含的一些动画效果。
  • :3D打印工业(含码、BOM3D文件)-解决
    优质
    本项目提供一款可3D打印的工业机器人手臂设计方案,包括完整代码、物料清单和三维模型。电路设计以开放源代码形式分享,助力创新制造与自动化应用开发。 前言:我打印的机器人手臂灵感来源于著名的工业机器人设计,但它是可打印的版本。此次开源的目的在于使开放源代码的机器人手臂能够被个人或小型企业使用,让机器人技术更贴近每个人的生活需求。该机器人的日常任务是提举大约2公斤重物。目前市场上的大多数机器人要么价格昂贵、功能较弱,或者体型庞大不便于操作和移动。工业机器人通常既昂贵又危险,并不适合在家庭或学校环境中使用。3D打印的工业机器人手臂实物展示:展望方面,一个经济实惠且易于制造的机械臂可以通过帮助残疾人更好地管理日常需求而让他们生活更加独立自主。此外,在一些环境较为恶劣但技术发展相对落后的地区,这种机器人的应用也能发挥重要作用。例如,如果你忘记把钥匙落在家里了,可以远程操控机器人手臂帮你开门解决问题。未来的发展趋势可能会朝着更便携、可移动的方向迈进以适应更多应用场景的需求和挑战。
  • Arduino Mega拾取与放置Delta
    优质
    本项目旨在利用Arduino Mega板卡构建和编程一个高效的三轴Delta机器人,专注于自动化拾取与放置任务,适用于教育及工业应用。 【标题】拾取和放置Delta机器人(由Arduino Mega控制):项目开发 本项目涉及一个自动化机械装置,在工业生产线上的物料搬运任务中非常有用。这种装置被称为Delta机器人,因其独特的三角形设计而得名,它包含三个相同的连杆臂,并且每个臂都连接到一个驱动器以实现高速、高精度的动作。在这个项目中,Arduino Mega被用作机器人的控制系统,负责处理运动指令。 【描述】 这个项目采用fischertechnik套件构建,该公司提供用于教育和工业级模型制作的材料。Arduino Mega是一种高级微控制器板,具有更多的数字输入输出引脚以及模拟输入接口,适合复杂项目的控制需求。这款Delta机器人特别设计用于执行拾取和放置任务——即精准地抓取物体并将其移动到另一个位置,在自动化生产线、装配线或实验室环境中非常有用。 【标签】 1. **Arduino Mega**:基于ATmega2560微控制器的开发板,拥有更大的内存及更多的接口,适合处理复杂的编程逻辑与控制任务。 2. **Delta Robot**:以其高效且快速的动作特性著称,通常用于精密组装和包装应用中。 3. **fischertechnik**:这是一个使用积木式的搭建系统,常用于教学和原型开发,可以快速构建出各种机械结构。 4. **Pick and Place**:机器人的一种基本操作方式,即抓取一个物体并将其放置于另一位置,在自动化领域内非常常见。 【压缩包子文件的名称列表】 1. `deltarobot2.ino` - 控制Delta机器人的Arduino程序代码。设定其运动路径、速度和抓取动作等。 2. `uploads2ftmp2ff0ef069d-3eeb-4095-8de1-406df1c129cc2fimg_3671_pJxV6DTsCm.JPG` - 可能是项目图片,展示Delta机器人的实物或工作过程。 3. `pick-and-place-delta-robot-controlled-by-arduino-mega-3eff40.pdf` - 介绍如何构建和编程该Delta机器人项目的说明书或报告。包括设计原理、硬件配置及软件实现等内容。 4. `uploads2ftmp2f9a86bc4c-9caa-419a-8d5b-bc097efe6b6a2fvakuumgreifer_P8zWEGiCtJ.stl` - 用于3D打印的STL文件,可能是Delta机器人上的真空吸盘部件模型。 此项目旨在通过Arduino Mega控制器实现一个fischertechnik构建的拾取和放置任务用Delta机器人。涵盖硬件搭建、软件编程及控制策略等多个方面,对于学习自动化控制、机械工程与编程的人来说是一个很好的实践平台。
  • Arduino“Miles”四足蜘蛛(含)-
    优质
    本项目介绍了一款基于Arduino平台开发的开源四足蜘蛛机器人“Miles”,附有详细电路图。适合机器人爱好者学习和研究。 该机器人使用8台SG90/MG90伺服电机作为腿部执行器,并由一块定制的PCB板供电与控制,其中包括Arduino Nano。这块PCB板为IMU模块、蓝牙模块以及红外传感器阵列预留了专用插槽,以增强机器人的自主性。机身采用3mm厚激光切割亚克力材料制成,也可以通过3D打印方式制作。 对于机器人爱好者而言,在逆运动学领域进行探索是一项极具挑战性的项目。我使用Altium软件来设计PCB板,并且已经将该设计的原理图和Gerber文件公开分享给有兴趣的人士查阅下载。 这款机器人在所有伺服电机同时运行的情况下,最多可以消耗4-5安培电流,因此需要具有更高输出能力的设计方案。由于7805稳压器的最大电流为1安培,为了满足需求我并联了6个LM7805 IC来增加总电流输出。 该设计特点包括: - MPU6050/9250用于角度测量 - 支持高达6A的电流输出隔离伺服电源 - HCSR04超声波传感器支持 - 提供蓝牙和I2C外围设备接口 所有模拟引脚均在Relimate上提供,可以方便地连接各种传感器与执行器。此外还有12路伺服电机驱动、电源指示LED以及PCB板规格如下: - 尺寸:77 x 94毫米 - 层数:双层FR4板材 - 厚度:1.6毫米 该设计为伺服电机和Arduino分别提供了独立的5V供电。在组装完成后,需要检查所有电源轨与地是否短路,包括Arduino的5V输出、伺服器的VCC电压以及输入端口上的12伏凤凰插座。 完成上述步骤后就可以开始对Arduino进行编程了,测试代码可以在我的GitHub仓库中找到。
  • Arduino发板完整-
    优质
    本项目提供了一套详细的基于Arduino开发板构建机器人的电路设计指南,涵盖所有必要的硬件组件和连接方式。 该机器人控制板包含一个ATmega328P微控制器和一个L293D电机驱动器。它与Arduino Uno板相似,但更实用,因为它不需要额外的屏蔽来驱动电机,并且没有跳线杂乱的问题。通过CH340G可以轻松编程此控制板,在同时驱动两个直流电动机时还可以使用I/O引脚连接不同的传感器进行操作。在这个项目中我们用到了HC-SR04超声波距离传感器和IR红外传感器,还接入了一个伺服电机。 这个控制板可以让您对一个具有五种不同场景的机器人编程:相扑模式、跟随我模式、跟踪模式、避开障碍物模式以及绘图模式。在该项目中,使用了DIP类型的组件以便于焊接。 所需元件包括: - 带有Bootloader的ATmega328P - L293D电机驱动器IC - B型USB插座 - DIP插座 - 12/16 MHz晶体振荡器 - L7805 TO封装稳压器 - uF电容、LED和电阻(例如:10K / 1K) - nF或pF的陶瓷电容器 - 电源插座与双针接线端子公头插件 - 六伏200RPM迷你金属齿轮减速电机 - 七点四伏1000mAh两节锂聚合物电池或九伏800mAh电池以及相应的连接器。 - 超声波模块HC-SR04和红外线传感器。 您可以通过观看演示视频了解如何制作自己的Arduino Uno板。
  • 【海】ArduPilot Mega板原理/PCB/固件码-
    优质
    本项目提供ArduPilot Mega无人机控制板的详细资料,包括原理图、PCB布局及固件源代码。适合爱好者学习与开发飞行控制系统。 ArduPilot Mega是一款完全可编程的飞行控制器,它需要GPS模块和各种传感器来支持无人机的操作。这款设备解决了稳定系统与导航两个关键问题,并且不再依赖于独立的稳定控制系统。此外,该装置还具备fly-by-wire(飞控)模式,在遥控器手动操控飞机时可以提供更加平稳、安全的飞行体验。 ArduPilot Mega由Chris Anderson和Jordi Muñoz设计并开发,其最新版本采用ATmega2560取代了先前使用的ATmega1280。该控制板包括三轴陀螺仪、加速度计、气压高度测量传感器以及一个工作频率为每秒十次的GPS模块。它还装备有用于监控电池状态的电压感应器,4MB的数据存储空间以记录飞行任务数据,并支持将这些数据导出成KML格式。 此外,该控制板具有内置硬件故障处理机制,在发生失控情况时可以引导无人机返回起始位置(此功能可选)。其他可能集成到系统中的传感器包括三轴磁力计、空速测量器和电流感应设备。