Advertisement

瑞萨e2studio (12) – 外部中断与定时器配置,以及输入捕获和测量频率。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
瑞萨e2studio(12) 包含外部中断与定时器配置的输入捕获测量频率功能。相关教程资料包括:上的文字教程链接为https://blog..net/qq_24312945/article/details/121372877,以及B站提供的教学视频链接为https://www.bilibili.com/video/BV1XP4y1o7nJ/。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • e2studio(12)——
    优质
    本教程为瑞萨e2studio系列第十二部分,详细介绍如何在微控制器中配置外部中断和定时器,并通过输入捕获功能实现频率测量。 瑞萨e2studio教程(第12部分)涉及外部中断与定时器配置以及输入捕获测量频率的内容。相关文字教程可在平台上找到;同时也有配套的教学视频在B站发布,帮助学习者更全面地掌握这些知识和技术细节。
  • STM32
    优质
    本简介探讨了如何在STM32微控制器上配置输入捕获模式下的定时器,详细介绍了所需步骤和代码示例。 测试信号的周期与占空比。
  • STM32使用模式
    优质
    本简介介绍如何利用STM32微控制器的定时器模块实现输入捕获功能,以精准地测量外部信号的频率。通过配置相应参数和中断服务程序,可以高效处理频率检测任务。 使用STM32定时器的输入捕获模式可以测量频率。这种方法通过捕捉外部信号的上升沿或下降沿来计算信号周期,并进一步得到频率值。这种技术在实现精确计时和检测传感器数据等方面非常有用。
  • STM32F103C6T6高级1的
    优质
    本文章介绍如何使用STM32F103C6T6微控制器中的高级定时器1进行输入捕获,以实现精确的频率测量。通过详细的配置步骤和示例代码,帮助读者掌握该技术的应用方法。 F103C6T6核心板的定时器资源较少,因此只能使用高级定时器1(TIM1通道1),并通过上升沿捕获来获取两高电平之间的时间差以实测频率。这种做法效果良好且精度较高。
  • STM32F1
    优质
    本项目介绍如何使用STM32F1系列微控制器实现输入信号的频率测量。通过GPIO和定时器输入捕获功能,精确捕捉外部信号周期,进而计算出频率值,适用于各种工业控制场景。 在STM32F1平台上实现了输入捕获测频功能,并能在2.8寸TFT液晶屏上显示汉字及频率测量数值,同时展示输入捕获计算值。
  • STM32F407代码.rar_STM32F407 _高电平_捉_
    优质
    本资源包含基于STM32F407微控制器的输入捕获程序,适用于高电平信号频率测量。文件内详细介绍了如何使用定时器进行精确频率检测,适合电子开发人员学习与参考。 STM32F407输入捕捉代码可以测量输入信号的高、低电平时间和频率,最高可测频率达20MHz。
  • MSP430F149A的
    优质
    本文介绍了基于MSP430F149单片机定时器A模块的频率捕获测量方法,详细讲解了其实现原理和应用技巧。 利用MSP430的定时器A捕获模式可以测量频率。此方法通过配置定时器A进入捕获模式,并在输入信号的上升沿或下降沿触发捕获中断,从而记录时间间隔信息以计算信号频率。
  • STM32 PWM波形占空比
    优质
    本项目介绍如何使用STM32微控制器通过输入捕获模式精确地捕捉外部PWM信号,并据此计算出其频率与占空比,适用于电机控制等应用。 将GPIOA0与GPIOA6连接即可。
  • STM32占空比.rar
    优质
    本资源介绍如何使用STM32微控制器的定时器功能进行双输入捕获,以精确测量信号的频率和占空比,适用于嵌入式系统开发人员。 使用STM32通过捕获计数高低电平的时间来获取端口的频率和占空比,采用的是定时器2的CH1和CH2通道。
  • 单片机的PWM
    优质
    本文章详细介绍如何在瑞萨单片机中配置PWM输出以及设置定时器中断功能,适用于嵌入式系统开发人员。 在电子设计竞赛中,瑞萨单片机经常被用于实现复杂的控制任务,例如四旋翼飞行器的控制系统。利用其PWM(脉宽调制)输出及定时器中断功能可以有效地完成这些复杂操作。 一、脉宽调制(PWM) 通过改变信号高电平的时间比例来调整平均电压值的技术称为脉宽调制。在无人机中,PWM主要用于控制电机转速以达到调节飞行姿态的目的。瑞萨单片机内置了专门的PWM模块,可以灵活地设置输出频率和占空比等参数,从而实现对电机速度的精确调控。 具体实施步骤包括: 1. 初始化PWM:设定预分频器、计数初值以及确定周期长度。 2. 配置PWM通道:选择相应的引脚并指定所需的占空比以控制电机转速。 3. 启动PWM输出,让其按照预定的参数持续运行。 4. 动态调整占空比,在飞行过程中根据控制器指令实时修改PWM信号,确保姿态稳定。 二、定时器中断 单片机中的另一个关键特性是定时器中断。它允许程序在特定时间间隔内执行预设的操作而无需连续查询状态。对于四旋翼无人机控制系统而言: 1. 定时控制:通过设置周期性触发的定时器来确定整个系统的采样频率,例如每几毫秒进行一次姿态检测与计算。 2. PWM更新:利用中断服务例程在适当的时间点改变PWM信号的比例值以实时调整电机速度。 3. 作为时间基准使用,帮助测量飞行器的速度和加速度等物理参数。 实现定时器中断的步骤如下: 1. 初始化定时器模块并配置其工作模式、预分频因子及比较寄存器值来设定溢出周期。 2. 启动全局与特定定时器中断功能。 3. 编写用于处理这些事件的函数,即所谓的“服务例程”,以执行必要的控制逻辑。 4. 在每次触发时自动跳转至该函数并完成相应操作后返回常规流程。 结合使用PWM输出和定时器中断机制可以使瑞萨单片机高效地操控四旋翼飞行器。此外,还需要配合PID或其他类型的控制器算法来进一步优化性能与稳定性。