Advertisement

L至S波段高效能超宽带功率放大器的设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文探讨了L至S波段高效能超宽带功率放大器的设计方法,旨在提升无线通信设备性能和效率。 针对超宽带功率放大器(UWB PA)匹配电路的设计难点,本段落提出了一种结合连续型功放理论、多谐波双向牵引低损耗匹配(LLM)技术以及切比雪夫低通滤波器阻抗变换原理的超宽带功率放大器设计方法。利用该方法设计出一款基于CREE公司CGH40025F-GaN HEMT,工作频带为400-3900MHz的超宽带功率放大器。实验结果表明,在输入功率为30dBm(1W)时,增益为12. 25依0. 75dB,输出功率大于41. 5dBm(14. 1W),功率附加效率(PAE)在41%到65. 1%之间,噪声系数(NF)控制在2. 5dB以内。相较于同等带宽的设备,该设计使功率附加效率提高了约10%。 关键词:超宽带功放;脉冲雷达;高效率;连续型功放;多谐波双向牵引低损耗匹配技术

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LS
    优质
    本文探讨了L至S波段高效能超宽带功率放大器的设计方法,旨在提升无线通信设备性能和效率。 针对超宽带功率放大器(UWB PA)匹配电路的设计难点,本段落提出了一种结合连续型功放理论、多谐波双向牵引低损耗匹配(LLM)技术以及切比雪夫低通滤波器阻抗变换原理的超宽带功率放大器设计方法。利用该方法设计出一款基于CREE公司CGH40025F-GaN HEMT,工作频带为400-3900MHz的超宽带功率放大器。实验结果表明,在输入功率为30dBm(1W)时,增益为12. 25依0. 75dB,输出功率大于41. 5dBm(14. 1W),功率附加效率(PAE)在41%到65. 1%之间,噪声系数(NF)控制在2. 5dB以内。相较于同等带宽的设备,该设计使功率附加效率提高了约10%。 关键词:超宽带功放;脉冲雷达;高效率;连续型功放;多谐波双向牵引低损耗匹配技术
  • 915GHz GaAs MMIC
    优质
    本研究开发了一款基于GaAs工艺的MMIC宽带高效功率放大器,工作频率覆盖9至15GHz范围,适用于多种无线通信系统。 基于0.15 μm栅长GaAs E-PHEMT工艺设计了一款可用于X波段和Ku波段的宽带高效率功率放大器。为解决二次谐波降低功率放大器效率的问题,采用四分之一波长微带线组成输出端偏置网络,并将二次谐波短接到地以提高功率附加效率;通过分析匹配网络级数对宽带匹配的影响,在输出匹配电路中使用电容微带线组成的两级电抗网络实现低Q值匹配,从而拓展了电路的宽带特性。测试结果显示,该放大器在9~15 GHz工作频率范围内连续波饱和输出功率大于28 dBm,功率附加效率为35%~45%,当功率回退至19 dBm时IMD3小于-34 dBc;该MMIC尺寸为2.34 mm*1.25 mm。
  • 基于GaNS
    优质
    本研究专注于开发一种应用于S频段通信系统的高性能、宽带GaN放大器。通过优化电路结构和材料特性,实现了高效率与宽工作带宽的结合,为无线通信技术的进步提供了新的解决方案。 摘要:氮化镓功率管因其宽带隙、高击穿电场等特点,在带宽与效率方面表现出色。为了探究GaN 功率放大器的特性,本研究利用Agilent ADS 等仿真软件进行了电路设计,并成功开发出一款S 波段宽带GaN 功率放大器。详细介绍了电路仿真的过程,并对所设计的宽带放大器进行测试,结果显示该放大器在S 波段内可实现超过44 dBm 的功率输出,证明了其具有宽带工作的能力。 新一代半导体功率器件主要包括SiC 场效应晶体管和GaN 高电子迁移率晶体管。与传统的硅双极型功率晶体管及第二代GaAs 场效晶体管相比,这些新型材料的器件具备显著优势。
  • 26GHz模块
    优质
    本设计探讨了在2至6GHz频段内高效宽带功率放大器模块的研发,旨在提高无线通信系统的性能与效率。 本段落介绍了一款工作在2~6 GHz频段的宽带功率放大器模块的设计过程和技术细节。该设计采用了CREE公司CGHV60040D型号GaN裸芯片,这款芯片具备高压承受能力、高输出功率以及良好的稳定性等优点。 首先,在选择静态工作点时,确定了50 V的工作电压(VDS=50 V)和200 mA的漏极电流(IDS),确保放大器处于AB类工作状态。通过Advanced Design System (ADS)软件进行直流曲线仿真后,得到VGS=-2.45 V为静态工作点。 接着,利用负载牵引技术确定最佳阻抗匹配点,在整个频率范围内每1 GHz进行一次负载牵引仿真以寻找等功率圆的交叠区域,并最终找到最优负载阻抗值为10+j12 Ω。这一步骤对于提升放大器带宽性能至关重要。 在处理键合线和微带线寄生参数时,使用HFSS软件建立电磁场模型进行仿真,并将获得的S参数导入ADS中进行联合仿真以减小封装影响、提高带宽性能。 设计过程中还特别关注了超倍频阻抗变换技术的应用。选择了电阻与电容并联形式作为源匹配电路的设计基础,在整个2~6 GHz范围内通过最优匹配网络和分布式微带线技术实现了50 Ω输入阻抗到目标阻抗的直接转换,仿真结果表明该设计在指定频率范围内的S11参数表现良好。 最后经过脉冲测试验证了所设计宽带功率放大器模块在其工作频段(1.8~5.5 GHz)内具有良好的性能指标:增益为10~13 dB,输出功率超过43 dBm,并且功率附加效率达到或超过了40%。这表明该模块在宽频带条件下具备高效的工作能力。 综上所述,这款宽带功放的设计充分体现了GaN材料的优势以及先进仿真技术的应用价值,在无线通信系统的发射性能提升方面具有重要的参考意义和实际应用潜力。
  • RF
    优质
    宽带RF功率放大器是一种电子设备,用于增强无线电信号的功率,特别适用于需要宽频带操作和高效信号放大的通信系统中。 本段落分析了当前几种主要的高功率放大器的预失真结构和实现方式。
  • ADS方法
    优质
    本文章探讨了利用ADS软件进行高效微波功率放大器的设计流程与技巧,包括电路优化和性能评估。 基于ADS软件选取合适的静态直流工作点,并采用负载牵引法得到LDMOS晶体管BLF7G22L130的输出和输入阻抗特性。通过设计与优化,得到了最佳共轭匹配网络,从而设计出高效率功率放大器。仿真结果表明,在中心频率为2.160 GHz时,该功率放大器的效率达到70%,具备良好的稳定性和较小的增益平坦度等优点。
  • D类音频
    优质
    本项目致力于设计一种高效的D类音频功率放大器,旨在优化音频输出性能与能源效率,适用于各类音响设备。 从给定的文件中可以提取出关于“基于D类放大的高效率音频功率放大器设计”的以下知识点: 1. 音频功率放大器的设计背景: 随着现代社会对高效、节能及小型化产品的需求不断增加,对于音频功率放大器性能的要求也随之提高。因此,在这种背景下,设计一种高效的放大器成为了电子工程师和技术人员的重要任务。 2. D类功率放大器的优势: D类(数字)放大器由于其高效率、低能耗和体积小等特点,在音频功率放大的领域中获得了广泛应用。这类放大器通常采用脉冲宽度调制技术来转换并增强音频信号,从而大大减少了能量损耗。 3. 单片机与FPGA的作用: 在该设计方案当中,单片机89C51以及可编程逻辑器件(FPGA)被用来进行控制和数据处理。具体而言,单片机会接收模拟输入信号,并将其转换为数字格式;而FPGA则负责生成精确的时序控制信号及PWM波形的产生与输出。 4. D类放大器的不同设计方案: 文件中提到了两种主要的设计方案: - 方案①:采用数字方法。该方案使用单片机来创建三角波,并完成音频信号比较,以生成PWM波。优点是硬件电路较为简单;缺点则是可能会引入较大的数字噪声。 - 方案②:基于硬件的解决方案。此方案直接通过硬件产生三角波并进行比较操作,能够创造出幅值更大且噪音更小的PWM波,因此最终选择了该方案。 5. 三角波与PWM波生成方式: 系统采用多种方法来创建三角波信号,包括使用NE555定时器和积分方波等方式。这些策略各有优势:例如利用NE555能够轻松实现并具有良好的线性度;而通过改变电阻值可以简单控制频率及幅值的积分方案则存在漂移问题。 6. 不同PWM波生成方法对比: 文档中还比较了三种不同PWM波产生的技术: - 方案①:直接比较法,即与音频信号进行直接比较以产生PWM波。 - 方案②:双路比较法,利用两个不同的三角波分别和音频信号的上下部分相比较,从而降低CMOS管开关次数并减少功耗。 - 方案③:反向处理方法,在放大后的音频信号上施加反转操作后再进行三角波比较以得到两组相反方向的PWM输出。 7. 过流保护设计: 系统中加入了短路防护措施,并提出了使用电流互感器和采样电阻两种方案。由于其实现简便且对整个系统的干扰较小,最终选择了后者作为首选策略。 8. 系统总体设计方案: 该系统由四个主要模块构成:高效功率放大、信号转换电路、过流保护以及功率测量功能。其中高效率的功率放大器是核心部分,并进一步细分为前置放大单元、三角波发生装置和比较环节等子组件。 综上所述,设计者为了实现高效的音频功率放大目标,运用了多种技术手段,在考虑到了包括效率、噪音水平、体积大小及成本在内的诸多因素后,最终确定了一种结合硬件电路与微处理器控制的设计方案,并通过集成PWM波形生成以及短路保护等功能,以期达到高质量且高能效的音频信号放大的效果。
  • 射频匹配电路
    优质
    本研究聚焦于设计高效的宽带射频功率放大器匹配电路,旨在提升射频信号传输效率与稳定性,适用于无线通信系统。 本段落介绍了一种分析同轴线变换器的新方法,并建立了理想与通用模型,从而降低了分析难度并简化了分析过程。通过研究,提出了一种结合同轴变换器与集总元件的匹配电路设计方法,通过对同轴线和集总元件参数进行优化来实现放大器性能提升。利用该方法为推挽式功率放大电路设计了一个匹配电路,并且仿真结果显示其匹配效率高达99.93%。 在射频电路及功率传输系统中,阻抗变换器和阻抗匹配网络是基本组成部分之一。为了使宽带射频功率放大器的输入、输出达到最佳功率匹配状态,设计合适的匹配电路成为关键任务之一。由于要在宽频带内实现有效的功率传输,这使得匹配电路的设计变得非常复杂。而本段落所介绍的同轴变换器可以有效解决这一问题,并能够实现高效率的电路匹配性能。