Advertisement

该文件名为路径跟踪算法.rar。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该代码设计了一种基于自适应控制的、用于两轮小车路径跟踪的算法。该算法的实现包含在压缩包中,其中包含了用于Matlab仿真的代码。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MPC_simcar_MPC_MPC_MPC仿真_
    优质
    本项目专注于汽车路径跟踪技术的研究与开发,采用模型预测控制(MPC)算法进行车辆轨迹优化和实时调整。通过SimCar平台模拟测试,验证了MPC在复杂环境下的高效性和稳定性。 使用Carsim与Matlab进行联合仿真,实现车辆跟踪双移线曲线的功能。
  • MATLAB中的-Thesis_Path_Following
    优质
    本论文探讨了在MATLAB环境下实现路径跟踪算法的方法与技术,旨在为自动驾驶车辆提供精确导航解决方案。通过详细分析和实验验证,提出了一种高效的路径规划策略,适用于复杂道路环境下的车辆控制。 本段落介绍了我的UNSW论文《增强的纯追踪算法与自动驾驶》的内容概要。文中包含了详细注释的代码以及启动和运行仿真的所有必要信息。读者可以通过滚动页面找到绿色文字部分,那里提供了MATLAB源代码的具体位置。 在该研究中,我们对经典的纯追踪算法进行了改进,以确保其能够更有效地应用于自动驾驶系统,并避免了简化处理的问题。这项工作由Edoardo M.Cocconi于2019年完成并保留所有权利。
  • .rar
    优质
    本资源包含针对光线追踪技术的路径追踪算法实现,适用于计算机图形学研究与学习。提供源代码和实验示例,帮助理解并优化图像渲染效果。 该代码为基于自适应控制的两轮小车路径跟踪算法,压缩包内含matlab仿真代码。
  • 汽车的MATLAB程序_与轨迹优化
    优质
    本项目基于MATLAB开发,专注于汽车路径跟踪技术的研究与实现。通过算法设计及仿真模拟,旨在优化车辆行驶轨迹,提高驾驶效率和安全性。适用于自动驾驶领域内的路径规划与控制研究。 汽车轨迹仿真能够实现汽车轨迹优化,并包含模型和过程代码。
  • 基于纯控制的及CarSim与Simulink联合仿真
    优质
    本研究提出了一种基于纯跟踪控制策略的路径跟踪算法,并通过CarSim和Simulink平台进行联合仿真验证。 纯跟踪控制与路径跟踪算法是自动驾驶及智能车辆领域中的关键技术之一。这些算法的主要目标在于确保车辆能够准确且稳定地沿着预定路线行驶,在实际应用中通常结合车辆动力学模型以及实时传感器数据,以实现精确的轨迹执行。 在联合仿真过程中,Carsim和Simulink是常用的工具。其中,Carsim是一款专业的车辆动力学模拟软件,可精准地模拟各种驾驶条件下的车辆行为;而Simulink则是MATLAB环境中的一个动态系统建模与仿真平台,在控制系统的设计及分析中被广泛应用。 通过将Carsim的车辆模型与Simulink的控制算法结合使用,可以提供全面的测试环境。在Simulink内设计并优化路径跟踪控制器(如PID控制器、滑模控制器或基于模型预测控制(MPC)的方法),随后利用接口使这些控制器输出作为车辆输入,以模拟真实驾驶情况。 常见的几种路径跟踪方法包括: 1. **PID控制器**:这是一种基本且常用的策略,通过比例(P)、积分(I)和微分(D)项的组合调整行驶方向,使其尽可能接近预定路线。 2. **滑模控制**:这种非线性控制方式具有良好的抗干扰性和鲁棒性,能够有效应对车辆模型中的不确定性因素。 3. **模型预测控制(MPC)**:MPC是一种先进的策略,考虑未来一段时间内的系统动态,并通过优化算法在线计算最佳的控制序列,以实现最小化跟踪误差或满足特定性能指标的目标。 在联合仿真过程中,我们可通过调整控制器参数、修改车辆模型或者改变模拟条件来评估不同算法在各种场景下的表现。图像文件(例如1.jpg、2.jpg和3.jpg)可能会展示仿真的可视化结果,包括行驶轨迹、控制信号的变化以及误差分析等;而纯跟踪控制路径跟踪算法联合.txt可能包含详细的仿真设置信息、数据及分析。 研究和发展这些技术对于提高自动驾驶车辆的安全性和性能至关重要。借助Carsim与Simulink的联合仿真环境进行深入开发和验证,为实际应用提供了可靠的基础支持。
  • 动态规划规划与中的应用
    优质
    本研究探讨了动态规划算法在解决复杂路径规划及路径跟踪问题中的高效性与适用性,旨在提升机器人或自动驾驶车辆导航系统的性能。 路径规划与路径跟踪的动态规划算法(DP算法)以及相关的Matlab脚本程序可以被提供,并且可以直接运行。
  • 智能车辆控制:纯控制及Stanley等线性相关方,基于MATLAB实现功能
    优质
    本项目聚焦于智能车辆路径跟踪技术,采用纯跟踪控制与Stanley算法,并利用MATLAB进行仿真验证,以实现高效准确的路径追踪。 智能车辆路径跟踪控制是自动驾驶技术中的关键环节之一,它决定了汽车如何准确地沿着预设路线行驶。我们将深入探讨两种主要的控制算法:纯跟踪控制与Stanley控制算法,以及其他可能涉及的相关线性算法。 纯跟踪控制是一种基础的方法,通过比较车辆的实际位置和期望轨迹之间的偏差来调整转向角。这种策略的核心在于设计合适的控制器(如PID控制器)以减小误差并确保稳定行驶。在MATLAB中实现时,可以通过建立车辆模型、定义目标路径以及设置控制器参数来进行仿真。 Stanley控制算法是一种更先进的方法,由Christopher Thrun等人于2005年提出。该算法利用前向传感器信息(如激光雷达或摄像头)来确定横向和纵向偏差,并将这些偏差转换为方向盘命令以实现无滑移跟踪。在MATLAB中应用Stanley控制通常包括三个步骤:获取传感器数据、计算偏差以及将其转化为方向盘指令。 除了这两种方法,还有其他线性相关算法可以用于路径追踪,例如LQR(线性二次调节器)和模型预测控制(MPC)。LQR通过最小化性能指标来设计控制器。MPC则是一种前瞻性的策略,它考虑未来多个时间步的行为以优化控制决策。 智能车辆路径跟踪技术是自动驾驶领域的重要组成部分,涉及控制理论、传感器融合及车辆动力学等多个方面。借助MATLAB这样的工具,我们可以对这些复杂的算法进行建模、仿真和优化,并为实际应用提供坚实的基础。
  • MATLAB汽车程序
    优质
    本程序利用MATLAB实现汽车路径跟踪算法,适用于自动驾驶系统开发与仿真研究,支持多种车辆模型和轨迹规划。 此条目包含“自主机器人路径规划与导航”视频的Simulink模型。演示介绍了如何使用三个组件模拟一辆自动泊车汽车:一条路径、一个车辆模型以及一个轨迹跟踪算法。该车辆模型基于自行车模型的运动学方程进行实现,而轨迹跟踪算法则利用了Robotics System Toolbox中的内置Pure Pursuit模块。
  • 目标滤波研究-目标.rar
    优质
    本资源深入探讨了目标跟踪领域的滤波算法,包括但不限于卡尔曼滤波、粒子滤波及其在复杂环境下的应用优化。适合对计算机视觉和信号处理感兴趣的学者和技术人员参考学习。 目标跟踪中的滤波算法-目标跟踪.rar:根据αβγ滤波算法,自己编写了一个基于CA和CV模型的程序。
  • MATLAB仿真的与PID、MPC控制-源码
    优质
    本项目提供了一个基于MATLAB的仿真环境,用于研究和比较不同控制策略(如PID及模型预测控制(MPC))在路径跟踪任务中的性能。包含详细实现代码和测试案例。 路径跟踪及PID和MPC控制算法的MATLAB仿真源码。