Advertisement

BDFSDE:利用后向微分公式求解微分方程组-MATLAB开发

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
BDFSDE是一款MATLAB工具箱,采用后向微分公式高效求解刚性微分方程组。适用于科学研究和工程应用中的复杂系统建模与仿真。 微分方程组的解析形式为{Y˙(t)=AY(t)+B, t∈[t0,tf],Y(t0)=Y0。采用后向微分公式法求解。 输入参数包括: - A:大小矩阵(n,n)。 - B : 大小矩阵 (n,s)。 - Y0:大小矩阵(n,s)。 - t0 和 tf :时间区间端点。 输出结果为: - Y(1,:):微分方程组的解Y1,1(t),即在给定时间内求得的解向量的第一个元素。 作者信息如下: - 作者 : LAKHLIFA SADEK - 联系方式:lakhlifasdek@gmail.com;Sadek.l@ucd.ac.ma - 最后修改日期为:2019年8月10日 测试表明,这种方法在计算近似解的时间上比Matlab中常用的普通方法(如ode23s)更快。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • BDFSDE:-MATLAB
    优质
    BDFSDE是一款MATLAB工具箱,采用后向微分公式高效求解刚性微分方程组。适用于科学研究和工程应用中的复杂系统建模与仿真。 微分方程组的解析形式为{Y˙(t)=AY(t)+B, t∈[t0,tf],Y(t0)=Y0。采用后向微分公式法求解。 输入参数包括: - A:大小矩阵(n,n)。 - B : 大小矩阵 (n,s)。 - Y0:大小矩阵(n,s)。 - t0 和 tf :时间区间端点。 输出结果为: - Y(1,:):微分方程组的解Y1,1(t),即在给定时间内求得的解向量的第一个元素。 作者信息如下: - 作者 : LAKHLIFA SADEK - 联系方式:lakhlifasdek@gmail.com;Sadek.l@ucd.ac.ma - 最后修改日期为:2019年8月10日 测试表明,这种方法在计算近似解的时间上比Matlab中常用的普通方法(如ode23s)更快。
  • Matlab与偏
    优质
    本教程详细介绍如何使用MATLAB软件高效求解常微分方程(ODE)及偏微分方程(PDE),适合工程和科学领域的学习者。 Matlab可以用来求解微分方程(组)及偏微分方程(组)。
  • MATLAB
    优质
    本课程介绍如何使用MATLAB软件求解各类微分方程及方程组,涵盖数值方法和符号计算,适用于工程、物理等领域的学习者。 本段落将介绍使用MATLAB求解微分方程及微分方程组的方法,并通过实例进行讲解。首先简要概述如何利用内置函数如ode45来解决常微分方程问题,接着详细介绍构建复杂系统模型的方法以及参数估计和灵敏度分析技巧。此外还将探讨处理偏微分方程的策略,包括使用pdepe等工具箱函数。文中将提供详细的代码示例以帮助读者更好地理解和应用这些技术。 对于初学者来说,在开始求解具体问题前理解基本概念非常重要:如何定义初始条件、边界条件以及选择合适的数值方法(如ode45或ode15s)。同时,掌握正确设置选项参数以改善计算效率和精度也是关键步骤之一。在解决实际工程与科学应用时,灵活运用MATLAB提供的各种资源将使问题求解变得更加高效。 希望读者通过本段落能够熟悉使用MATLAB进行微分方程数值模拟的基本流程,并为进一步深入学习打下坚实基础。
  • MATLAB与偏.pdf
    优质
    本PDF教程深入讲解了如何使用MATLAB软件来解决数学中的微分方程和偏微分方程问题,适合工程学、物理学及数学相关专业的学习者参考。 在Matlab命令窗口输入`pdetool`并回车后,PDE工具箱的图形用户界面(GUI)系统就启动了。从定义一个偏微分方程问题到完成解偏微分方程的定解,整个过程大致可以分为六个阶段。
  • MATLAB中常及常-MATLAB与常.pdf
    优质
    本PDF文档深入讲解了如何使用MATLAB软件进行常微分方程及其方程组的有效求解,涵盖基础概念、编程技巧及实例应用。适合工程和科学计算领域的学习者和技术人员参考。 Matlab常微分方程和常微分方程组的求解方法涉及使用内置函数如ode45来解决数学问题中的这类方程。通过编写适当的函数文件定义方程,用户可以利用Matlab的强大功能进行数值计算与分析。文档详细介绍了如何设置初始条件、参数以及输出结果的方式,帮助学习者掌握这些工具的应用技巧。
  • MATLAB_PDE_ZIP__pde_偏
    优质
    本资源提供利用MATLAB求解偏微分方程(PDE)的工具包和示例代码,涵盖各类偏微分方程组的数值解法。通过PDE Toolbox, 用户可以便捷地设置、求解并可视化二维几何中的静态及时间依赖性偏微分方程问题。 偏微分方程组的求解可以通过编写偏微分代码直接进行。
  • Matlab.pdf
    优质
    本PDF文档详细介绍了如何使用MATLAB软件来解决各种类型的微分方程问题,包括常微分方程和偏微分方程,并提供了具体的实例和代码示例。 ### 使用Matlab解微分方程 #### 一、微分方程的解析解 解析解是指通过数学方法直接得出微分方程的精确解。对于一些简单的微分方程,可以直接通过数学方法找到解析解;但对于大多数复杂的微分方程,解析解往往是不存在或者难以获得的。Matlab 提供了强大的符号计算功能,可以用来寻找微分方程的解析解。 ##### Matlab 函数 `dsolve` `dsolve` 是 Matlab 中用于求解微分方程的函数。它可以通过提供微分方程的表达式和初始条件来计算出方程的解析解。该函数的基本调用格式为: ```matlab sol = dsolve(eqn1, eqn2, ..., eqnN, cond1, cond2, ..., condM, var) ``` 其中: - `eqn1, eqn2, ..., eqnN` 表示需要求解的微分方程; - `cond1, cond2, ..., condM` 表示微分方程的初始条件或边界条件; - `var` 表示微分方程中的自变量。 #### 示例 **示例 1:** 求解微分方程 ( frac{du}{dt} = 1 + u^2 ) ```matlab sol = dsolve(Du == 1 + u^2, t) ``` 解析解为:( u = tan(t + C_1) ),其中 ( C_1 ) 是积分常数。 **示例 2:** 求解带有初始条件的二阶线性微分方程 ( y + 4y + 29y = 0 ) 和初始条件 ( y(0) = 0, y(0) = 15 ) ```matlab y = dsolve(D2y + 4*Dy + 29*y == 0, y(0) == 0, Dy(0) == 15, x) ``` 解析解为:( y = 3e^{-2x}sin(5x) )。 **示例 3:** 求解系统的微分方程 ( dot{x} = 2x - 3y + 3z, dot{y} = 4x - 5y + 3z, dot{z} = 4x - 4y + 2z ) ```matlab [x, y, z] = dsolve(Dx == 2*x - 3*y + 3*z, Dy == 4*x - 5*y + 3*z, Dz == 4*x - 4*y + 2*z, t) ``` 解析解为一组关于时间 ( t ) 的表达式。 #### 二、微分方程的数值解 对于不能通过解析方法解决的微分方程,我们可以采用数值方法求解。数值解是指通过数值计算的方式获得微分方程解的一种近似表示,通常适用于复杂方程或无法获得解析解的情况。 ##### 数值解的定义 在实际应用中,由于很多微分方程没有解析解,或者即使存在解析解也过于复杂而不便于实际操作,因此经常需要寻求数值解。数值解是指根据给定的初值,在若干离散点上求解微分方程的方法,这些点上的解满足一定的精度要求。 ##### 建立数值解法的一些途径 1. **用差商代替导数**:如果步长 ( h ) 足够小,可以用差商近似导数,例如 ( f(x) approx frac{f(x+h) - f(x)}{h} )。基于这一思想,可以推导出如欧拉法等数值解法。 **欧拉法** 公式为:( y_{i+1} = y_i + hf(x_i, y_i) )。 2. **梯形公式**:在给定点之间使用梯形公式进行积分,从而得到近似解。 **改进的欧拉法** 公式为:( y_{i+1} = y_i + frac{h}{2}[f(x_i, y_i) + f(x_{i+1}, y_{i+1})] )。 3. **泰勒展开**:通过泰勒公式对微分方程进行展开,进而得到一系列高阶数值解法,例如龙格-库塔法等。 4. **多步法**:利用过去多个点的信息预测下一个点的值,例如亚当斯-巴什福斯法等。 每种数值解法都有其适用范围和优缺点,在选择合适的数值解法时需考虑问题的特点以及
  • 均衡器:S-FUNCTION-MATLAB
    优质
    本项目介绍如何使用MATLAB的S-Function模块求解微分方程,并应用于差分均衡器的设计与实现中,提供源代码和详细说明。 初学者的基本示例展示了如何通过S-Function求解微分方程。 1. 打开Simulink库浏览器。 2. 展开“Simulink”,然后转到“用户定义函数”并展开它。 3. 在Simulink环境中拖动S-Function模块。 4. 双击该模块,并在“S-Function name”中输入您保存的S-Function文件名,例如本例中的“example”。确保您的两个文件都保存在同一目录中并且名称不与其他任何文件重叠。 接下来,在Matlab命令行中输入`open sfunctmpl`来打开相关模板。
  • 图形户界面特定常 - MATLAB
    优质
    本项目旨在通过MATLAB的图形用户界面(GUI)设计,提供一种直观的方法来设置并解决特定类型的常微分方程组问题。该工具不仅简化了复杂数学模型的输入过程,还能够帮助用户更深入地理解不同参数变化对系统行为的影响。 此函数用于求解一组常微分方程(ODE),这些方程表示具有图形用户界面的受限目标单元模型。它将 ODE 模型参数以及包含实验数据的输入文件作为输入,并绘制出 ODE 的数值积分结果,同时显示实验数据和模型预测之间的残差平方和。如果在研究中使用此源代码,请参考以下论文:Banerjee S、Perelson AS 和 Moses M (2011) Towards a Quantitative Understanding of Within Host Dynamics of West Nile Virus Infection(准备中)。
  • MATLAB——随机
    优质
    本课程专注于使用MATLAB进行随机微分方程的数值模拟与解析。学习者将掌握如何运用MATLAB工具箱解决复杂的随机动力学问题,并进行深入的数据分析和可视化展示。 在MATLAB开发中求解随机微分方程,并编写用于计算LSDE前两个矩的函数。