Advertisement

低功耗CMOS级联式模数转换器。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
模数转换器,一种专注于低功耗设计的CMOS逐次逼近型模数转换器。该文档提供的是PDF格式的版本。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 高速CMOS拟缓冲
    优质
    本项目设计了一种新型低功耗高速CMOS模拟缓冲器,采用优化电路结构和动态偏置技术,在降低能耗的同时提高了信号传输速率与稳定性。 引言: 模拟电压缓冲器在混合信号设计中扮演着至关重要的角色。它们主要用于信号处理及驱动负载两大功能。当用于连接测试电路或需要低输入电容的内部节点时,缓冲器可以确保这些敏感区域不受寄生电容增加的影响;而在作为负载驱动器件使用时,则期望其能够在电源电压范围内迅速响应,并在整个输出摆幅范围上保持较高的转换速率。 随着集成电路供电电压逐渐降低以应对功耗和可靠性挑战,许多基础模拟组件的设计也相应地进行了调整。为了在低电压条件下维持性能水平,轨到轨操作成为必要条件之一,旨在提升信噪比表现。 本段落将介绍一种实现AB类工作的方案。
  • CMOS噪放大设计
    优质
    本研究专注于低功耗CMOS低噪声放大器的设计,致力于在保持高性能的同时大幅降低能耗。通过优化电路结构与参数选择,实现高增益、宽频带及低噪声指数的目标,在无线通信领域具有重要应用价值。 针对低功耗电路设计要求,在SMIC 0.18 μm CMOS工艺基础上,我们设计了一种电流复用的两级共源低噪声放大器。仿真结果显示,当工作频率为2.4 GHz时,该放大器具有26.26 dB的功率增益、-27.14 dB的输入回波损耗(S11)、-16.54 dB的输出回波损耗(S22)和-40.91 dB的反向隔离度。此外,其噪声系数为1.52 dB,在供电电压为1.5 V的情况下,静态功耗仅为8.6 mW,并且电路运行稳定可靠。
  • CMOS折叠共源共栅运算放大
    优质
    本设计提出了一种创新的低功耗、低压CMOS折叠式共源共栅运算放大器,适用于便携式电子产品和生物医学传感器等对电源效率要求高的应用场景。 低压低功耗CMOS折叠共源共栅运算放大器及其在电子技术开发板制作中的应用进行了交流探讨。
  • 精密单端差分
    优质
    低功耗精密单端转差分转换器是一种高效电路解决方案,能够将单端信号精确地转换为差分信号。适用于多种高精度测量场合,如传感器接口、数据采集系统等。 ### 多功能低功耗精密单端转差分转换器详解 #### 一、概述 在许多现代电子系统中,为了提高信号质量和抗干扰能力,通常需要将单端信号转换成差分信号。本段落旨在详细介绍一种多功能低功耗精密单端转差分转换器的设计方法及其应用场景。 #### 二、单端转差分转换器的重要性 单端信号是指相对于公共参考点(通常是地)的信号,而差分信号则是指两个信号之间的差异值。使用差分信号的优势包括: - **抑制共模噪声**:通过较大的信号幅度,差分信号能够更好地抵抗共模干扰。 - **提高信噪比**:相比单端信号,差分信号可以显著降低二次谐波失真,从而实现更高的信噪比。 - **适用于多种应用场景**:例如驱动现代模数转换器(ADC)、通过双绞线电缆传输数据以及调理高保真音频信号等。 #### 三、基本单端转差分转换器设计 图1展示了一种简单的单端转差分转换器设计方案,该方案基于AD8476精密低功耗完全差分放大器。AD8476内部集成了精密电阻,简化了电路的设计复杂度。其主要特点包括: - **差动增益为1**:这意味着输出信号直接反映了输入信号的变化。 - **共模电压控制**:通过VOCM引脚上的电压设置输出共模电压;若未接入外部电压,则由内部的1MΩ电阻分压器决定。 - **噪声滤波**:电容C1用于过滤掉由于内阻引入的噪声,进一步提高信号质量。 - **增益误差小**:AD8476通过激光调整其内部设置电阻来确保电路的最大增益误差仅为0.04%。 #### 四、高性能单端转差分转换器设计 对于需要更高性能的应用场景,图2展示了更复杂的单端转差分转换器设计方案。该方案将OP1177精密运算放大器与AD8476级联,并且将AD8476的正输出电压反馈至运算放大器的反相输入端来实现设计目标。这种方式的优点包括: - **提高输入阻抗**:最大输入偏置电流为2nA,这有助于改善信号质量。 - **减小失调电压**:最大失调(RTI)为60µV,最大失调漂移为0.7µV/°C,有利于提升整体精度。 - **反馈环路优化**:大开环增益能够减少AD8476的误差,包括噪声、失真、失调和偏置。 #### 五、改进型单端转差分转换器设计 为进一步提高灵活性与性能,图3展示了具有电阻可编程增益功能的改进型单端转差分转换器设计方案。其关键特性在于: - **增益调节**:通过外部电阻RF和RG可以调整电路从单端到差分信号转化时的放大倍数。 - **稳定性考虑**:为了确保系统的稳定运行,必须注意差动放大器与运算放大器之间的带宽匹配问题。 - **带宽限制**:如果运算放大器的单位增益频率远大于差分放大器的带宽,则可以在反馈路径中添加一个限频电容CF以改善稳定性。 #### 六、实验结果分析 图4展示了在10Hz、1Vp-p正弦波驱动下的输入与输出信号示意图,该测试基于使用地为基准电压的设计方案。这些数据验证了设计的有效性和可靠性。 #### 七、结论 多功能低功耗精密单端转差分转换器是一种重要的信号处理组件,在工业控制、通信以及音频等领域具有广泛的应用前景。通过合理选择器件和技术方案可以有效提升信号处理系统的性能和稳定性。未来的研究还可以探索更多创新的技术手段,以满足不断发展的应用需求。
  • FreeRTOS(待机)_版本.zip
    优质
    本资源提供FreeRTOS操作系统在低功耗待机模式下的优化版本,适用于需要长时间运行且对能耗有严格要求的应用场景。 FreeRTOS低功耗模式的代码示例展示了如何进入和退出这种节能状态。下面是简单的操作步骤: 1. 进入低功耗模式:为了使微控制器进入低功耗模式,你需要调用相关的API函数来停止所有非必要的任务,并关闭不需要的外设时钟。 2. 退出低功耗模式:当系统需要恢复到正常工作状态时,可以通过唤醒事件(如外部中断)触发回调函数。此回调函数负责重新启动之前被禁用的任务和硬件模块,使系统恢复正常运行。 注意,在编写具体代码前,请确保查阅FreeRTOS官方文档以获取最新的API接口信息及使用说明。
  • CMOS运算放大设计与分析
    优质
    本文探讨了两级CMOS运算放大器在低功耗环境下的设计方法及性能优化,并进行了详细的理论分析和实验验证。 低功耗CMOS两级运算放大器的设计与分析
  • CMOS逐次逼近型ADC.pdf
    优质
    本论文探讨了一种基于CMOS技术的低能耗逐次逼近型模数转换器的设计与实现,旨在提高其在便携式设备中的应用效率。文档详细分析了设计原理、优化策略及性能测试结果。 《低功耗CMOS逐次逼近型模数转换器》是一篇关于模数转换器的PDF文档。该文档详细介绍了如何设计一种适用于低能耗应用环境下的CMOS逐次逼近型(SAR)模数转换器,旨在为相关领域的研究人员和工程师提供有价值的参考信息和技术指导。
  • STM32——停止
    优质
    简介:本文介绍了STM32微控制器在停止模式下的低功耗特性,探讨了如何通过该模式实现能源效率的最大化,并提供了相关配置方法和注意事项。 STM32F10x有三种低功耗模式:睡眠模式、停止模式和待机模式。在开发过程中,通常会选择停机模式,因为它具有较低的功耗,并且可以被任一中断或事件唤醒。
  • STM32F103ZET6 停机
    优质
    本简介探讨了如何在STM32F103ZET6微控制器中实现低功耗停机模式,旨在降低能耗并延长电池寿命。 STM32F103ZET6的低功耗停止模式是一种节能状态,在这种状态下微控制器可以显著减少能耗,同时保持其内部寄存器的状态不变。当设备进入停止模式后,除了实时时钟(RTC)以及可能被启用用于唤醒功能的一些I/O口外,大部分时钟会被关闭以降低功率消耗。此模式非常适合需要长时间电池供电的应用场景。
  • 基于CMOS的超基准电路
    优质
    本研究提出了一种基于CMOS工艺的超低功耗基准电压电路设计方法,适用于低电压、高能效应用环境。 我们设计了一种超低功耗全CMOS基准电路,该电路既能产生1纳安的基准电流又能生成560毫伏的基准电压。通过亚阈值技术有效降低了电路的能耗;使用工作在深线性区内的MOS管替代了传统电阻元件,大大减少了芯片面积;采用共源共栅电流镜提高了电源抑制比。 利用SMIC 55纳米工艺,在Cadence Spectre平台上进行了仿真测试。结果显示:在温度区间从-40℃至110℃内,基准电流的温漂系数为每摄氏度0.28%,而基准电压的温漂系数仅为每摄氏度24ppm;电源电压范围介于0.9V到2V之间时,基准电流对电源变化的敏感性(即调整率)是每伏特2.6%、对于基准电压则为每伏特0.48%。在100Hz频率下,基准电流和电压的峰-峰值噪声比分别为-34dB与-50dB。 此外,在所有测试条件下,该电路功耗仅为6纳瓦,并且芯片布局面积仅有大约0.000 42平方毫米。