Advertisement

数据已加载至哈希表。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
将数据文本文件加载至哈希表进行存储,并依据《Data Structures and Algorithms Using C#》的第十章内容进行构建。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 结构作业
    优质
    简介:本作业聚焦于深入理解哈希表这一高效数据结构,涵盖其设计原理、冲突解决策略及性能分析,旨在提升学生在实际问题中的应用能力。 数据结构第16次作业:Hash表拼写检查 **先修条件** 学生应掌握以下先决技能: - 哈希表的概念及递归函数的理解。 - 继承 - 通过专业化增强现有数据结构。 **目标** 本作业旨在巩固学生对哈希表作为可搜索容器使用方法的理解。 **成果** 成功完成此作业的学生将掌握如下内容: - 熟悉如何使用哈希表,特别是哈希集的用法。 背景 任何文字处理软件通常都包含拼写检查功能。该功能不仅指出潜在错词,还建议可能的修正选项。 **描述** 本次评估需要完成一个拼写检查程序。以下是程序运行时的一个截图: - 程序开始会打开由命令行参数指定的一份单词列表文本段落件。如果无法打开所指明的单词列表文本段落件,则输出错误信息并终止。 - 成功打开所述的单词列表后,该程序将每个词存储到哈希表中。 - 接下来,程序根据用户通过命令行提供的输入来打开一个需要拼写检查的文件。 - 打开此文件后,程序会比较其中每一个词汇与储存在哈希表中的单词。如果某个词在哈希表里不存在,则被视作错词,并显示该错误字出现的位置以及可能的修正建议列表。 **任务** 为了完成此次评估,你需要实现类Dictionary并完善main.cpp中拼写检查程序的部分代码。 - 完成HashSet类定义:此类提供三个处理哈希集的功能函数(搜索、插入和移除),这些函数接受一个单一的关键字引用作为参数。注意使用eq成员进行关键字比较,并考虑冲突解决策略及哈希表的大小。 - 接下来,完成Dictionary类的构造器实现,该构造器接收单个字符串参数为单词列表文本段落件名,并将其中所有词放入字典中。 - 完成hash_function方法在dictionary.h中的定义。 - 最后完善check_spelling函数。此函数已经包含逐行读取文件及使用stringstream实例从每一行提取每个词汇的代码,你需要检查每一个词语的拼写是否正确。通过Dictionary类继承来的搜索功能来判断一个词是否存在字典中;如果存在,则认为该单词是正确的;若不存在则视为错词,并生成和显示可能修正建议列表。 **提交** - hashset.cpp - 你完成的HashSet定义。 - dictionary.h - 你完成的Dictionary定义 - dictionary.cpp(如有创建) - main.cpp - 完成后的拼写检查程序。
  • C++中的结构
    优质
    本文章介绍C++中哈希表的数据结构及其应用。通过解释其工作原理和实现方式,帮助读者掌握高效的哈希表操作方法。 数据结构课上的哈希表事例适合初学者使用和参考。
  • 文件导入
    优质
    本文章介绍了如何高效地将外部数据文件加载到哈希表中的方法和步骤,详细解释了哈希函数设计、冲突解决策略以及性能优化技巧。 将数据文本段落件读取到哈希表中进行存储,参考《Data Structures and Algorithms Using C#》第十章的内容来实现。
  • 类使用除留余法作为
    优质
    本项目实现了一个基于除留余数法构造哈希函数的哈希表类,适用于快速数据检索和存储场景。 哈希查找方法如下:1. 哈希表类的哈希函数采用除留余数法;2. 解决哈希冲突使用开放定址法中的线性探测法;3. 构建一个包含10个数据元素的集合;4. 测试两种不同长度(m=13和m=11)的哈希表,并在其中查找几个特定元素。
  • 详解
    优质
    简介:本文详细解析了哈希表的数据结构原理与实现方法,包括哈希函数、冲突解决策略等内容。适合编程爱好者和技术人员学习参考。 哈希表是一种高效的数据存储与检索方式,在数据结构领域扮演着重要角色。它通过将键(Key)映射到一个确定的位置——通常是数组的索引位置——来实现快速访问和查找功能。在Python中,字典是基于哈希表构建的基础数据类型之一。 哈希函数作为核心机制,接收输入后的键并生成唯一对应的哈希值,此数值常为非负整数,并可用于数组下标定位。理想情况下,该函数应确保不同键之间产生的散列值分布均匀且冲突较少;然而,在实际应用中难免出现相同哈希值的情况(即“碰撞”),此时便需要采取相应的处理策略。 常见的解决方法包括: 1. **开放寻址法**:当发生碰撞时寻找下一个可用的地址,直到找到为止。这种方法通常要求哈希表容量足够大以避免填满。 2. **链地址法**:每一个桶(对应数组中的一个单元)都连接着一条链表,所有散列值相同的键值对均存储于该列表中;查询时先通过计算得到索引位置再遍历相应链表寻找目标元素。 3. **二次哈希法**:当首次生成的哈希结果冲突时,则使用另一套函数重新进行计算。 Python中的字典采用了上述原理,支持O(1)平均时间复杂度下的插入、删除及查找操作。其中的关键点在于键必须为不可变类型(如字符串或元组)以确保其可被正确散列化处理。常用的操作包括: - `dict[key]`:访问对应值;若未找到对应的键,则抛出异常。 - `dict.get(key, default)`:返回指定的值,如果不存在则给出默认参数。 - `dict[key] = value`:设置新的键/值对关系。 - `del dict[key]`:移除给定的键及其关联信息。 - `key in dict`:判断特定键是否存在字典中。 - `len(dict)`:返回当前包含的所有项的数量。 - `dict.keys()`、`dict.values()`、`dict.items()`:分别提供对所有键名、值和成对元素(即“键/值”)的迭代访问。 在实际编程实践中,哈希表被广泛应用于各种场景中,如缓存系统、数据库索引构建及统计分析等。掌握并熟练应用此数据结构能够显著提高程序性能,在优化算法设计时尤为关键。
  • C语言 结构之.docx
    优质
    本文档深入探讨了在C语言编程环境中实现和应用数据结构中的哈希表技术,包括其原理、特点及优化策略。 数据结构C语言作业/练习代码已完美运行。
  • 关于结构实验
    优质
    本数据结构实验旨在通过实现和分析哈希表,探讨其在处理大规模数据集中的效率与性能,涵盖冲突解决策略等核心概念。 ### 一. 设计课题:哈希表设计 #### 需求分析: **目的与任务** 根据数据元素的关键字及所给定的哈希函数建立并初始化哈希表,并利用开放地址法解决冲突问题,通过屏幕输出的功能菜单选择所需功能来实现对数据元素在哈希表中的插入、显示、查找和删除操作。初始化时将`elem[MAXSIZE]`, `elemflag[MAXSIZE]`以及计数器`count`置为0。 **程序需求** 输入一组个数不超过哈希表最大长度的数据,根据其关键字及给定的哈希函数将其存入哈希表中,并在发生冲突的情况下使用开放地址法解决。提供插入、显示、查找和删除数据元素的功能。 #### 实验概要设计: 定义ADT HashTable如下: - **数据对象**:D1={ai| ai∈elem[MAXSIZE], i=0, 1, ..., n},其中`MAXSIZE`为哈希表长度。 - D2={ai | ai ∈ elemflag[MAXSIZE]}是记录哈希表中每个位置是否已存放关键字的标志集合。 #### 基本操作: 1. **Hash(key)**:根据给定的关键字计算并返回其对应的哈希地址。 2. **Search(H, key)**:在哈希表H中查找指定键值key,如果找到则返回true,否则返回false。 3. **Insert(H, key)**:将数据元素插入到哈希表中。若已存在相同关键字,则输出已有此数!并失败退出;成功时计数器加一,并更新状态标志位。 4. **Delete(H, key)**:从哈希表H中删除指定键值key的数据项,返回是否删除成功的信息。 5. **Display(H)**:显示整个哈希表的内容。 #### 主要函数实现: - 初始化哈希表 - 创建并填充哈希表(插入数据) - 显示当前状态的哈希表内容 - 查找特定关键字是否存在 - 删除指定的关键字 ### 二.程序代码: ```cpp #include using namespace std; const int MAXSIZE = 10; // 假设的最大长度为10,实际使用时可根据需要调整大小。 typedef struct { int key; bool flag; // 标记位:未使用、已占用或已被删除的状态。 } HashNode, *HashTable[MAXSIZE]; // 初始化哈希表 void Initialize(HashTable &H) { for (int i = 0; i < MAXSIZE; ++i) H[i] = nullptr; } // 插入操作,如果关键字已经存在则输出提示信息并返回失败。 bool Insert(HashTable &H, int key) { if (!Search(H, key)) { // 若未找到该键值 HashNode *p = new HashNode{key, true}; // 创建新节点,并设置状态为true表示已占用; H[key % MAXSIZE] = p; // 根据哈希函数计算地址并插入。 } else { cout << 已有此数! << endl; return false; } } // 查找操作 bool Search(HashTable &H, int key) { HashNode *p = H[key % MAXSIZE]; while (p != nullptr && p->flag == true) if(p->key == key) break; // 如果找到,结束循环。 else p = H[++key % MAXSIZE]; // 若未找到,则继续查找下一个地址(线性探测)。 return p != nullptr && p->flag; } // 显示哈希表内容 void Display(HashTable &H) { cout << Hash table address: ; for (int i = 0; i < MAXSIZE; ++i) if(H[i] == nullptr || !H[i]->flag) // 如果位置为空或状态为未使用,则显示空。 cout << NULL ; else cout << H[i]->key << (<< i <<); // 显示关键字及地址。 cout << endl; } // 删除操作,成功则返回true;否则提示并返回false。 bool Delete(HashTable &H, int key) { HashNode *p = nullptr; // 搜索目标元素 Search(H, key); // 先查找该键值的位置 if (p != nullptr && p->flag == true) { // 如果找到了且状态为已使用,则更新其标志位。 p->flag = false; return true; } else { cout << 无此数! << endl; // 若未找到或已被删除,提示并返回失败信息。 return false; } } int main() { Hash
  • 姓名结构作业
    优质
    本作业为数据结构课程中关于姓名哈希表的设计与实现任务。学生需完成哈希函数设计、冲突解决策略选择及性能分析等内容,以巩固对哈希表原理的理解和应用能力。 为班级30个人的姓名设计一个哈希表,假设姓名用汉语拼音表示。要求使用除留取余法构造哈希函数,并采用线性探测再散列法处理冲突,确保平均查找长度的上限为2。
  • 结构设计(1).doc
    优质
    本文档详细介绍了哈希表的数据结构设计原理与实现方法,包括哈希函数的选择、冲突解决策略以及哈希表的性能分析等内容。适合计算机科学专业学生和编程爱好者阅读。 ### 问题描述 针对某个集体(例如你所在的班级)中的“人名”设计一个哈希表,使得平均查找长度均不超过R。完成相应的建表和查表顺序。 ### 基本要求 假设人名为中国人姓名的汉语拼音形式。待填入哈希表的人名共有30个,取平均查找长度的上限为2。哈希函数用除留余数法构造,采用伪随机探测再散列法处理冲突。 ### 概要设计 1. 构造结构体:`typedef struct{};` 2. 姓名表的初始化:`void InitNameTable();` 3. 建立哈希表:`void CreateHashTable();` 4. 显示姓名表:`void DisplayNameTable();` 5. 姓名查找:`void FindName();` 6. 主函数:`void main() ;` ### 详细设计 1. **姓名表的初始化** ```c void InitNameTable() { NameTable[0].py = louyuhong; NameTable[1].py = shenyinghong; NameTable[2].py = wangqi; NameTable[3].py = zhuxiaotong; } ```
  • 设计与算法结构
    优质
    《哈希表设计与算法数据结构》一书深入探讨了哈希表的设计原理及其在计算机科学中的应用,涵盖了多种高效的哈希算法和实现技巧。 算法与数据结构中的哈希表设计包括调试可运行的代码、需求分析、概要设计和详细设计。