Advertisement

皮尔斯晶振振荡器布局指南

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《皮尔斯晶振振荡器布局指南》是一本专注于指导电子工程师如何优化设计和布局基于皮尔斯电路结构的晶体振荡器的实用手册。本书深入剖析了影响振荡器性能的关键因素,提供了详尽的设计原则与实践技巧,旨在帮助读者实现高效、稳定的时钟信号生成解决方案。 我们常用的振荡器是皮尔斯振荡器(Pierce oscillator),它由放大器和一个带宽很窄的选频滤波器组成。其中,放大器集成在芯片内部,而滤波器则由晶振或陶瓷谐振腔构成。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《皮尔斯晶振振荡器布局指南》是一本专注于指导电子工程师如何优化设计和布局基于皮尔斯电路结构的晶体振荡器的实用手册。本书深入剖析了影响振荡器性能的关键因素,提供了详尽的设计原则与实践技巧,旨在帮助读者实现高效、稳定的时钟信号生成解决方案。 我们常用的振荡器是皮尔斯振荡器(Pierce oscillator),它由放大器和一个带宽很窄的选频滤波器组成。其中,放大器集成在芯片内部,而滤波器则由晶振或陶瓷谐振腔构成。
  • 原理详解与使用.pdf
    优质
    本PDF详细解析了皮尔斯振荡器的工作原理,并提供了实用的应用指导和设计建议,适合电子工程专业的学生及从业者参考。 许多设计师熟悉基于皮尔斯门拓扑的振荡器(以下简称“皮尔斯振荡器”),但并非所有人都真正理解其工作原理或掌握设计技巧。在实践中,不少人直到产品已投入生产才发现振荡器无法正常运行,这通常会导致项目的延误和整体故障。 为了防止这些情况的发生,在设计阶段应给予振荡器足够的关注,并确保它能在制造前正常运作以避免从市场召回产品的噩梦场景。本应用说明旨在介绍皮尔斯振荡器的基本原理以及如何进行良好的振荡器设计指导。此外,该文档还提供了一个关于确定不同外部组件的方法和正确的PCB设计指南。 最后,本段落档包含一个选择合适晶体及外部元件的简要指南,并列出了一些适用于STM32 32位ARM®Cortex®MCU与STM8af/al/s微控制器(HSE和LSE)推荐使用的晶体,以加速应用程序开发。适用产品清单见表1。
  • 电路与PCB设计.pdf
    优质
    本书《晶体振荡器电路与PCB布局设计指南》深入解析了晶体振荡器的工作原理、电路设计及优化策略,并提供详尽的PCB布局建议,帮助读者提升电子产品的稳定性和可靠性。 ### 晶体振荡器电路与PCB布线设计指南 #### 一、石英晶振的特性及模型 石英晶振是电子设备中的关键频率控制组件,尤其在微控制器系统中扮演重要角色。它是一种压电器件,能够将电能转换为机械振动,并且这种能量转换发生在特定共振频率上。 **石英晶体等效电路参数包括:** - **C0**: 并联电容值(并接于串联臂),主要由晶振尺寸决定。 - **Lm**: 动态等效电感,代表了晶振机械振动的惯性。 - **Cm**: 动态等效电容,表示晶振弹性。 - **Rm**: 动态等效电阻,反映了内部损耗。 其阻抗可由以下公式描述(假设 Rm 可忽略): \[ Z = jX \] 其中 X 为晶振的电抗,具体表达式如下: \[ X = \frac{1}{\omega C_m} - \omega L_m \] 这里 ω 表示角频率。 - **Fs**: 串联谐振频率,在 \(X=0\) 的条件下计算得出。 \[ Fs = \frac{1}{2\pi\sqrt{L_mC_m}} \] - **Fa**: 并联谐振频率,当 X 趋近无穷大时确定。 \[ Fa = \frac{1}{2\pi\sqrt{\left(\frac{1}{\omega^2C_0} + \frac{1}{\omega^2C_m}\right)L_m}} \] 在 Fs 和 Fa 之间(图中阴影区域),晶振工作于并联谐振状态,呈现出电感特性,并且相位变化约为 180°。该区域内频率 \(FP\) 可通过以下公式计算: \[ FP = \frac{1}{2\pi\sqrt{\left(\frac{1}{\omega^2C_0} + \frac{1}{\omega^2C_m}\right)\left(L_m + \frac{1}{\omega^2C_L}\right)}} \] 通过调整外部负载电容 \(CL\),可以微调振荡器频率。制造商通常会指定推荐的 CL 值以确保晶振在特定频率下正常工作。 **等效电路参数实例**: 一个具体晶体参数为 Rm = 8Ω, Lm = 14.7mH, Cm = 0.027pF, C0 = 5.57pF。根据上述公式,计算得出 Fs 和 Fa 分别约为 798kHz 及 8MHz。若外部负载电容 CL 设为 10pF,则振荡频率 FP 约为 7996Hz。为了达到目标标称值(例如8MHz),CL 应调整至约4.02pF。 #### 二、振荡器原理 振荡器是一种能够自行产生周期信号的电路,广泛应用于生成稳定的时钟和射频信号等场合。对于微控制器而言,一个稳定且准确的时钟至关重要,它直接影响系统性能与可靠性。 **基本组成包括:** - **放大器**: 用于放大信号。 - **反馈网络**: 提供正向反馈使信号循环。 - **滤波器**: 确保选择特定频率范围内的信号。 振荡条件: 1. **巴克豪森准则**: 要求环路增益为 0dB,总相移需达到360° 或者 0°。 2. **足够的相位裕量**:以确保系统稳定性。 3. **幅度裕度**: 在温度和电源电压变化下仍保持稳定振荡。 #### 三、Pierce 振荡器 Pierce 振荡器是一种常见且适用于石英晶振的电路,通过连接晶体与两个电容器(C1 和 C2)构成。该类型的振荡器因其频率稳定性高和受温度影响小而被广泛使用。 **设计要点包括:** 1. **反馈电阻 RF**: 用于设定增益并确保启动及持续工作。 2. **负载电容 CL**: 影响振荡频率,通过选择合适的CL值可以微调至目标频率范围。 3. **增益裕量**: 较高的增益裕量有助于提高稳定性。 4. **驱动级别 DL 和外部电阻 RExt 计算**:限制晶振电流以保护器件免受损害。 5. **启动时间**: 合理设计可缩短所需的时间至稳定输出状态。 6. **牵引度 Pullability**: 指频率对电容变化的敏感性,低牵引度意味着更高的稳定性。 #### 四、选择晶
  • 优质
    晶体振荡器,简称晶振,是一种利用石英晶体的压电效应和频率特性来产生精确稳定振荡信号的电子组件,广泛应用于通信、计算机及各类测量设备中。 晶体振荡器是一种电子器件,其基本构成包括从石英晶体内按特定角度切下的薄片(称为晶片)。这种晶片也被称为石英晶体谐振器或简称晶体、晶振;如果在封装内部添加IC组成振荡电路,则该元件被称作晶体振荡器。这类产品通常采用金属外壳进行封装,但也存在使用玻璃壳、陶瓷或塑料材料的情况。
  • 32.768K
    优质
    32.768K晶体振荡器是一种低频、高稳定性的石英晶体振荡器,广泛应用于各类电子设备中,尤其在计时和RTC(实时时钟)模块中发挥关键作用。 介绍多种晶振及其封装图,帮助大家在绘制PCB板和查找元器件时更加方便。
  • 中的和谐有什么不同?
    优质
    本文探讨了晶体振荡器中晶振和谐振器的区别。虽然它们都用于信号稳定,但两者在功能与应用上有所差异。深入了解以优化电路设计选择。 在电子工程领域,尤其是单片机系统中,晶振(Crystal)和谐振器(Oscillator)是两个至关重要的组件,在生成精确的时钟信号方面发挥着核心作用。尽管这两个术语有时会被混用,但实际上它们之间存在显著差异。 首先来看无源晶振。这是一种被动元件,主要功能在于提供一个准确且稳定的频率参考点。石英晶体构成了这种类型的晶振的基础部分,并不自带任何可以产生电信号的机制或能力。它通过压电效应来工作:施加电压时会产生形变;反过来,机械振动也会被转换成相应的电信号变化。当外部提供的信号频率与该晶体自身的固有谐振频率相匹配时,就会引发显著的机械共振现象,即所谓的“压电谐振”。这种特性使得石英晶振成为制造高精度频率源的理想材料,并广泛应用于通信、计时和数据处理设备中。 然而,无源晶振本身不能直接生成稳定的电信号输出。为了使其工作并产生所需的信号波形,需要额外的外部电路——例如晶体振荡器电路来配合使用。这些附加组件通常包括放大器等元件,它们共同作用于建立一个完整的反馈回路结构,在这个闭环系统中维持持续且稳定的工作状态。 相比之下,谐振器则是一种更加集成化的解决方案。它不仅包含了石英晶片本身,还内建了必要的电子电路来驱动和控制其内部的机械振动过程。这种有源形式的谐振器能够独立运作并输出稳定的时钟脉冲信号而无需依赖外部辅助组件的支持。 除了基于石英材料的产品外,市场上还有其他类型的谐振器可供选择,比如陶瓷基体或LC(电感-电容)组合型等。其中,陶瓷谐振器虽然在频率稳定性方面可能略逊色于石英产品,但因其生产成本较低且工艺简便而受到青睐;而LC类型则通过调整内部的电抗元件来设定特定的工作频率。 综上所述,在晶振与谐振器之间的主要区别在于是否具备内置的支持电路。无源晶振需要依赖外部设备才能正常工作并产生所需的输出信号,有源形式的产品则自带完整的驱动机制可以直接使用。因此,在设计单片机系统时正确选择这两种元件类型对于确保系统的运行稳定性和性能表现至关重要。
  • 电路设计.pdf
    优质
    《晶体振荡电路设计指南》是一本专注于晶体振荡器原理与应用的专业书籍,内容涵盖振荡器的设计、调试及常见问题解决方法。适合电子工程专业人员阅读参考。 晶振电路设计指南涵盖了负载电容的选择、负阻的处理以及驱动功率的计算等内容,非常详尽。
  • 自适应.rar_SIMULINK_Hopf_仿真_自适应
    优质
    本资源为SIMULINK环境下Hopf振荡器的自适应振荡器设计与仿真实验,涵盖振荡特性的深入探索及参数调整分析。 自适应振荡器的MATLAB Simulink文件用于仿真Hopf振荡器。
  • 无源电路设计
    优质
    《无源晶体振荡电路设计指南》是一本专注于讲解如何设计高效、稳定的无源晶体振荡器电路的专业书籍。书中详细介绍了晶体振荡器的工作原理及其在通信系统中的应用,并提供了实用的设计方法和技巧,帮助工程师解决实际问题。 在电子设计领域,晶体振荡器(晶振)的应用极其广泛,并且发挥着至关重要的作用。可以说,在电路板中的地位如同人体心脏一般重要。尽管它看似简单,但如果设计不当,则可能严重影响产品的稳定性。 许多工程师在进行无源晶振的设计时都会遇到一些问题,例如无源晶振无法起振或输出频率出现偏差等现象。面对这些问题,有些经验丰富的工程师可能会依靠以往的经验来解决;然而对于部分新手来说,他们往往感到束手无策,不知道如何着手查找原因。 本段落旨在从原理层面解析这类问题的成因,并提供指导建议帮助读者避免类似情况的发生。同时还将讨论关于无源晶振选型的相关知识,以期为工程师们在设计过程中做出更加合理的选择提供参考和支持。
  • 并联式
    优质
    并联式晶体振荡器是一种利用石英晶体在电路中实现高稳定度频率输出的电子元件,广泛应用于通信、计时和测量等领域。 1. 掌握晶体振荡器的电路组成与基本工作原理。 2. 熟悉如何判断晶体振荡器是串联还是并联类型。 3. 了解晶体振荡器各项主要技术指标的意义,并掌握相应的测试技能。