Advertisement

基于SwinTransformer、ResNet和Unet的ST-Unet语义分割网络代码实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目实现了结合Swin Transformer与ResNet架构的ST-Unet语义分割模型,并提供了详细的代码及文档支持。 ST-Unet是一种结合了Swin Transformer、ResNet和Unet的语义分割网络。原论文提供的源码较为复杂且存在不少错误与资源缺失问题。我对此进行了整理和完善,使其更加通俗易懂,并补充了一些不足之处。这份代码适合初学者进行语义分割相关研究或实践使用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SwinTransformerResNetUnetST-Unet
    优质
    本项目实现了结合Swin Transformer与ResNet架构的ST-Unet语义分割模型,并提供了详细的代码及文档支持。 ST-Unet是一种结合了Swin Transformer、ResNet和Unet的语义分割网络。原论文提供的源码较为复杂且存在不少错误与资源缺失问题。我对此进行了整理和完善,使其更加通俗易懂,并补充了一些不足之处。这份代码适合初学者进行语义分割相关研究或实践使用。
  • UNet示例
    优质
    本项目采用深度学习方法,利用改进的UNet模型进行图像语义分割。通过实验验证了该网络在特定数据集上的有效性和优越性,为语义分割任务提供了新的解决方案和参考实例。 data文件夹里存放的是数据集,其中RGB图像作为输入,通道数为3;figure_ground是掩码(mask),通道数为1。 datasets.py:定义了数据集的加载方式。 loss.py:使用Dice Loss作为损失函数。 test.py:用于测试模型性能,输入一张图片并输出训练结果。 train.py:负责训练过程。 Unet.py:实现了UNet模型。
  • Swin-Unet-Transformer
    优质
    本研究提出了一种基于Swin-Unet-Transformer架构的新型二分类语义分割模型,旨在提高复杂场景下图像细节识别与分割精度。 1. 增加了数据加载部分,并优化了二分类的损失函数。 2. 添加了必要的中文注释以便更好地理解代码。 3. 附带了自己的数据集以供测试使用。 4. 如有问题,欢迎随时联系交流。
  • TensorFlow2.0-Unet: 源ResNetUnet
    优质
    本项目采用TensorFlow 2.0框架开发,实现了结合ResNet残差网络结构和U-Net架构的医学图像分割模型。代码公开,便于学习与研究。 使用TensorFlow 2.0的UNet和ResNet配置环境,请按照以下步骤操作:安装所需的库(通过运行`-r require.txt`),然后执行`demo.py`脚本以查看结果。具体的操作指南可以在名为说明.txt的文件中找到。
  • PytorchPython UNet图像
    优质
    本项目采用PyTorch框架实现了UNet模型,专门用于图像的语义分割任务。通过深度学习技术,能够准确识别并标注图像中的不同区域和对象。 使用Pytorch实现图像语义分割的U-Net,并结合密集CRF后处理技术。
  • PyTorchUNet模型及
    优质
    本项目采用PyTorch框架实现经典UNet语义分割模型,并提供详细的代码和文档。适用于医学图像处理等领域研究与应用开发。 模型在FloodNet数据集上进行了训练,mIOU达到了0.83左右。为了训练自己的数据集,建议将输入的训练图像切分为384x384的小图片后再进行模型训练。推荐使用标准UNet架构,并按照以下方式来训练你自己的模型: 首先,在`train.py`文件中修改数据集地址为你自己的文件夹路径。 然后可以采用如下命令行参数进行训练: ``` python train.py --epochs 20 --batch-size 16 --learning-rate 2e-4 --scale 1 --validation 0.1 --classes 10 --amp ``` 其中,`--amp`表示使用半精度训练模式。而`--scale`参数用于在图片已经裁剪为384x384大小的情况下不需要再进行缩放处理。
  • Keras人像Unet.zip
    优质
    本项目为基于Keras框架实现的人像分割模型,采用UNet架构,适用于人像与背景分离任务。提供代码和预训练权重下载。 使用Keras实现Unet网络,可以对人像进行分割,并从视频或图像中提取人物。已提供一个训练好的模型,下载后根据教程即可开始测试。
  • PytorchUNet图像.zip
    优质
    本资源提供了一种使用Python深度学习框架PyTorch实现的UNet图像分割模型。包含详细的代码注释和数据预处理步骤,适用于医学影像分析等领域研究与应用。 在计算机视觉领域,图像分割是一项重要的任务,它旨在将图像划分为不同的区域或对象,每个区域具有相似的特征。PyTorch是一个强大的深度学习框架,提供了灵活性和效率,并使得开发复杂的神经网络模型如UNet更为便捷。本段落将深入探讨如何使用PyTorch实现UNet分割网络以及其在图像分割中的应用。 **一、PyTorch简介** PyTorch是由Facebook开源的一个深度学习库,它基于Torch构建但提供了一个更加现代和Python友好的接口。核心特性包括动态计算图和支持强大的GPU加速功能,这使得研究人员能够快速地实验并调试神经网络模型。 **二、UNet网络结构** UNet是一种用于图像分割的卷积神经网络(CNN),最初由Ronneberger等人在2015年提出,并主要用于生物医学图像分析。其设计灵感来自于U形结构,包含对称的收缩和扩张路径。收缩路径通过连续的卷积层和池化层来减少输入尺寸并增加特征表达能力;而扩张路径则使用上采样操作恢复原始输入尺寸的同时结合浅层信息以便更准确地定位目标。 1. **收缩路径**:由一系列卷积层以及池化层构成,不断缩小输入大小,并增强特征的表示力。 2. **扩张路径**:通过执行上采样以重新获得初始分辨率并融合较早阶段提取的信息来恢复细节和精确度。 **三、UNet在图像分割中的优势** 1. **跳跃连接(skip connections)**: UNet引入了这种机制,将收缩路径与解码部分的特征图进行拼接,使得模型能够同时利用全局信息及局部上下文。 2. **对称结构设计**: 网络架构是对称的,这保证编码和解码阶段保持一致性的特征维度,并有助于恢复精细细节。 3. **适应性强**:UNet适用于不同尺寸的输入图像且需要较少训练数据量。 **四、在PyTorch中实现UNet** 使用PyTorch构建一个完整的UNet模型包括以下步骤: 1. 定义基本模块: 创建卷积层, 池化层及上采样等。 2. 构建网络架构:按照U形结构将这些组件组合起来,形成收缩和扩张路径。 3. 选择损失函数:挑选适合图像分割任务的损失函数如交叉熵损失(CrossEntropyLoss)。 4. 设置训练流程: 安装优化器, 并完成前向传播、反向传播及参数更新等步骤。 5. 评估与推理阶段: 在验证集上测试模型性能,并进行实际应用或进一步调整。 **五、案例实践** 文中可能包含一个示例代码,演示如何在PyTorch中搭建并训练UNet模型。该代码涵盖了数据预处理, 模型构建、训练循环以及结果可视化等方面内容,是学习理解UNet于PyTorch中的实现的良好资源。 总结来说,由于其灵活性和易用性,使用PyTorch实现UNet成为可能并且十分有效。通过掌握如何在PyTorch中搭建并应用这个分割网络模型, 研究人员可以深入研究图像分割技术,并将其应用于医疗影像分析、自动驾驶或遥感图像等领域。对于那些希望在深度学习特别是在图像分割方向进行探索的人来说,熟悉PyTorch和UNet的使用是非常有价值的技能。
  • 免费UNet
    优质
    本项目提供一个免费的UNet语义分割模型源代码,适用于医学图像、遥感影像等领域的二值及多类分割任务。 请参考我的博客“完结篇:什么是语义分割?原理+手写代码实现?”来了解相关知识和技术细节。
  • 3D-Unet:Chainer大脑3D Unet
    优质
    本研究利用深度学习框架Chainer实现了3D U-Net模型,专为大脑图像自动分割设计,旨在提高医学影像分析精度与效率。 3D Unet的Chainer实现用于大脑分割任务。培训配置位于configs/base.yml文件内。由于GPU内存限制,我们采用了基于补丁的方法进行训练。该方法要求使用SimpleITK v4,并遵循yaml格式定义网络架构中的3D Unet结构。 为了训练3D Unet模型,请参考以下命令行参数: - `python train.py -h`:显示帮助信息。 - `--gpu GPU, -g GPU`:指定GPU ID(输入负值表示使用CPU)。 - `--base BASE, -B BASE`:程序文件的基本目录路径。 - `--config_path CONFIG_PATH`:配置文件的路径。