Advertisement

基于光学相控阵原理的可调焦距液晶透镜

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本发明提出了一种基于光学相控阵技术的可调焦距液晶透镜,通过电场控制改变光线路径实现焦点调节,适用于虚拟现实、增强显示等领域。 基于光学相控阵技术原理的可调焦距液晶透镜。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本发明提出了一种基于光学相控阵技术的可调焦距液晶透镜,通过电场控制改变光线路径实现焦点调节,适用于虚拟现实、增强显示等领域。 基于光学相控阵技术原理的可调焦距液晶透镜。
  • 采用技术实现方法
    优质
    本文提出了一种基于光学相控阵技术实现可变焦液晶透镜的新方法,为智能眼镜、增强现实设备等提供了创新性的解决方案。 本段落基于光学相控阵理论,并结合液晶材料的电光特性提出了一种可变焦液晶透镜的设计方法及其控制过程。在分析了相控阵液晶透镜实现的可能性之后,设计并制作了一个具有1920个电极、孔径宽度为9.6毫米且电极占空比达到80%的液晶透镜,其驱动电压设定为5伏特,并能够对每根电极进行独立控制。该系统可以实现多达201级交流电压调整。 通过计算机仿真技术模拟了所设计液晶透镜产生的相位延迟分布情况,并对其在焦点处形成的光斑形状大小与普通光学透镜的对比进行了误差分析,结果表明这种可变焦液晶透镜能够有效地调节其焦距范围从0.4米到10米之间连续变化。 实验中还观察了该液晶透镜对激光束发散角的影响,进一步验证了它在实现动态调整焦点位置方面的可行性。
  • 空间制器
    优质
    液晶空间光调制器是一种利用液晶材料的光学特性来操控光线相位、幅度或偏振状态的器件。本项目探讨其基本工作原理及其在现代光学中的应用。 ### 空间光调制器相关:液晶空间光调制器基本原理 #### 一、引言 空间光调制器(Spatial Light Modulator, SLM)是一种能够对光波进行空间调制的器件,它能够在光波的振幅、相位或偏振态等方面实现精确控制。其中,液晶空间光调制器(Liquid Crystal Spatial Light Modulator, LCR-SLM)因其具有响应速度快、可编程性强等特点而被广泛应用于各种领域。 #### 二、空间光调制器概述 空间光调制器按照其工作原理可以分为多种类型,包括液晶型、数字微镜型和声光调制型等。本段落主要关注的是液晶型空间光调制器,这类调制器通常由一个液晶层和两个透明电极构成,通过施加不同的电压来改变液晶分子的排列方式,从而实现对光波的调制。 #### 三、液晶空间光调制器的基本原理 1. **液晶特性**: - 液晶材料具有介于固体和液体之间的特殊性质。 - 它们的分子排列可以通过外部电压的变化来调整。 - 当没有外加电压时,液晶分子倾向于沿某一特定方向排列;当施加电压时,分子的排列会发生变化,从而影响透过它们的光线。 2. **工作原理**: - **相位调制**:通过改变液晶分子的排列状态,可以改变入射光的相位,进而实现相位调制。 - **振幅调制**:在某些类型的液晶空间光调制器中,也可以通过控制液晶的透光率来实现振幅调制。 3. **驱动机制**: - 通常采用电光效应来驱动液晶分子的排列变化。 - 电压的大小和频率会影响液晶分子的响应速度和调制效果。 4. **应用领域**: - 全息显示:利用液晶空间光调制器的相位调制能力生成全息图像。 - 光学计算:用于实现光学信号处理和光学计算任务。 - 显示技术:如投影显示系统中的核心组件之一。 - 激光光束整形:通过改变激光束的相位分布来实现特定的光束形状。 #### 四、关键技术与挑战 1. **响应时间**:提高液晶分子的响应速度是提升液晶空间光调制器性能的关键因素之一。 2. **分辨率**:增加像素密度可以增强空间光调制器的分辨率,这对于高精度的应用至关重要。 3. **对比度**:优化材料和结构设计能够改善调制器的对比度,从而提高图像质量。 4. **稳定性**:长期使用下保持良好的性能稳定性和可靠性对于实际应用十分重要。 #### 五、未来发展趋势 随着材料科学和技术的进步,未来的液晶空间光调制器有望在以下几个方面取得突破: 1. **更高的响应速度**:通过开发新型液晶材料和优化驱动电路,进一步缩短液晶分子的响应时间。 2. **更大的调制范围**:扩展液晶空间光调制器在相位调制方面的动态范围,满足更复杂的应用需求。 3. **更广泛的光谱范围**:目前大多数液晶空间光调制器主要工作在可见光范围内,未来可能会拓展到红外乃至紫外区域。 4. **更小的尺寸和更低的成本**:通过技术创新降低成本并缩小尺寸,使得液晶空间光调制器可以在更多场景中得到应用。 总之,液晶空间光调制器作为一种重要的光学器件,在多个领域都有着广泛的应用前景。随着技术的进步和发展,其性能将不断提升,为科学研究和技术应用带来更多的可能性。
  • COMSOL技术7x7元三维探头:及声场动画演示模型
    优质
    本研究采用COMSOL软件开发了7x7阵元的三维相控阵聚焦探头模型,提供可调焦距功能,并实现声场动态变化的动画演示。 COMSOL三维相控阵聚焦探头:7*7阵元可调焦距声场模型 该模型基于COMSOL技术设计,展示了一个由7*7阵元组成的三维相控阵聚焦探头的动态效果。焦点位于大约20毫米的位置,工作介质为水,频率设定为0.5MHz,并且可以调节焦距。 动画展示了不同时刻下的声场变化情况: - 图1:剖面下显示声场收缩; - 图2:声场聚焦状态; - 图3:剖面下显示声场扩散。 模型编号:72# 此外,还有一个与此对应的压电片阵列激励的三维聚焦探头模型(瞬态和频域版本)。
  • 3x3列激通信系统设计
    优质
    本研究提出了一种采用3x3光学矩阵的微透镜阵列激光通信光学系统设计方案,旨在提升数据传输效率与稳定性。 本段落设计了一种新型大视场激光通信接收光学系统,并采用了基于微透镜阵列形式的设计方案。提出了一个完整的3×3光学矩阵模型来描述微透镜阵列的光传输特性,探讨了不同元件倾斜角度及偏心对像面高度和出射角的影响规律。根据设计需求,确定了合理的倾斜角度与偏心公差范围,并通过积分透镜系统的像差分析,在理论仿真基础上完成了大视场激光通信接收光学系统的设计。 为了验证三维矩阵模型的准确性,我们进行了样机研制、匀光测试及视场测试等实验工作。最终成功设计并制造了一种新型激光通信接收光学系统,其视场角达到0.9°且均匀性高达86.58%。通过与理论仿真数据对比发现两者吻合良好。 此外,在分析了该系统的激光通信链路特性后进一步证明了微透镜阵列在激光通信中的应用可行性和优越性,为后续研究提供了新的思路和方向。
  • 摩尔超表面旋转成像技术与双层超构研究(发表2021年《Nano Letters》)
    优质
    本文在2021年的《Nano Letters》期刊上发表了关于摩尔调焦超表面透镜的创新研究,重点介绍了可见光旋转调焦成像技术及双层超构透镜的设计与应用。 2021年《Nano Letters》期刊介绍了摩尔调焦超表面透镜技术及其应用研究,其中重点探讨了可见光旋转调焦成像技术和双层氮化镓纳米柱构建的超构透镜设计。通过采用由氮化镓圆柱单元构成的设计方案,并利用摩尔相位超表面原理,实现了可见光在不同角度下的连续聚焦效果。 该论文的研究内容涵盖了多个方面:首先是基于fdtd(时域有限差分法)技术对单个氮化镓纳米柱的结构进行仿真分析;其次是对传输相位参数进行全面扫描以优化性能表现;然后是开发用于双层摩尔超构透镜设计的相位计算代码,以便于精确控制光束聚焦特性。此外,还进行了模型仿真实验来验证理论预测,并通过远场电场分布计算进一步评估其光学成像质量。 论文提供了一系列研究材料支持学习与应用需求:包括fdtd仿真软件中的模型构建脚本、用于相位分析的Matlab代码以及详细的文字教程文档等。这些资源可以帮助研究人员或学生更好地理解和实践摩尔连续调焦超构透镜的设计理念及其在可见光成像领域的潜在价值。 核心关键词涵盖了: - 摩尔连续调焦超构透镜 - 氮化镓纳米柱单元结构 - 双层摩尔相位超表面 - fdtd仿真技术 - 远场电场分布计算方法 - Matlab编写相位分析代码 - 仿真模型的复现结果展示 - 教程文档指导 论文标题可以概括为:“基于FDTD仿真的可见光旋转调焦与摩尔双层超构透镜研究”。
  • 设计望远
    优质
    内调焦光学设计的望远镜通过调整内部光学元件的位置来改变焦距,使得用户能够在不更换镜头的情况下观察不同距离的目标,提供更为便捷和灵活的天文观测体验。 光学设计非常有用!我辛苦制作了一个内调焦望远镜系统,有空可以看看。
  • 不同形状公式探讨
    优质
    本篇文章主要探讨了不同形状透镜(如凸透镜、凹透镜)的焦距计算方法及其适用条件,旨在帮助读者深入理解光学基础知识。 这段文字可以这样改写:介绍各种形状的焦距公式的专业论文通俗易懂,对于学习遥感或摄影的人来说非常有必要了解这些最基本的知识哦!
  • 自动显微电技术
    优质
    简介:本项目探讨了自动调焦在光学显微镜中的应用,结合先进的光电技术优化成像质量与操作便捷性,旨在推动微观观察领域的技术创新。 自动调焦技术主要用于实验室及研究型光学显微镜。这种光电自动调焦技术结合了光电子学、激光、计算机图像处理以及自动化控制与传动技术,代表了对光学显微镜智能化和自动化的需求。它具备快速响应且准确无误的特点;能够实时提高显微镜成像的清晰度,并为信息存储及处理提供有利条件。随着自动调焦技术的发展与应用普及,将推动光学显微镜的产品质量和水平提升。 光电自动调焦的基本原理包括轴向定位(即聚焦)和伺服运动两个主要部分。其中,轴向定位的核心是解决离焦问题,也就是当物体距离未被正确调整或在活体观察时由于生物样本表面的抖动导致物距变化而产生的模糊现象。为了实现自动对焦,首先需要通过快速且动态的方式检测离焦情况。
  • 过率仿真MATLAB代码-电子科大院《电子》课程
    优质
    本资源提供用于模拟液晶透过率的MATLAB代码,适用于电子科技大学光电信息学院《液晶光电子学》课程教学与研究。 光电科学与工程学院研究生课程《液晶光电子学》结题报告作业:透过率仿真。