Advertisement

LMI级倒立摆H∞控制器方案的构建与应用。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
针对固高公司直线型一级倒立摆系统,我们设计了一种基于线性矩阵不等式(LMI)理论的鲁棒H∞控制器。该控制器利用Simulink软件以及M文件,成功地完成了系统建模和控制器的具体设计工作,并最终对所设计的系统算法进行了全面的验证与确认。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LMI系统:H无穷LMI法研究
    优质
    本研究聚焦于三级线性矩阵不等式(LMI)倒立摆系统的H无穷与LMI控制策略分析,探讨其稳定性和性能优化。 三级倒立摆的LMI状态反馈控制H无穷控制设计方法研究
  • H设计实现(基于LMI
    优质
    本文提出了一种基于线性矩阵不等式(LMI)的方法来设计和实现一级倒立摆系统的H∞控制策略,以增强其稳定性和鲁棒性。 针对固高公司的直线型一级倒立摆系统,设计了一种基于线性矩阵不等式的鲁棒H∞控制器,并利用Simulink及M文件实现了系统的建模与控制器的设计,完成了算法的验证工作。
  • _bangbang.rar__时间最优分析
    优质
    本资源为《一级倒立摆系统的时间最优控制研究》,探讨了通过不同策略实现一级倒立摆从不稳定状态至稳定状态所需最短时间,包括详细的实验数据和理论分析。 直线一级倒立摆的时间最优控制起摆设计仿真图展示了该控制系统的设计与模拟结果。
  • PID设计_赵明明.zip_PID二_二PID_二阶_二阶PID_
    优质
    本项目为《二级倒立摆PID控制器设计》,由赵明明完成,专注于研究并实现基于PID控制的二级(二阶)倒立摆系统稳定控制策略。 基于PID控制的二阶倒立摆的设计方法提供了具体的实施方案。
  • _模糊_InvertedPendulum_FuzzyPendulum_二
    优质
    本项目为二级倒立摆系统的模糊控制系统设计与实现。通过InvertedPendulum模型建立系统,并采用FuzzyPendulum算法进行稳定控制,探索复杂系统的非线性控制策略。 模糊控制已成功应用于二级倒立摆系统,并经过验证可以实现。希望这能为大家提供帮助。
  • LQR-;起;LQR
    优质
    本研究探讨了倒立摆系统的自摆启动特性及其基于线性二次型调节器(LQR)的控制策略,旨在提高系统稳定性与响应性能。 倒立摆自摆起算法采用能量分析法进行起摆控制,并使用LQR控制实现稳摆控制。倒立摆模型通过S函数编写,可以运行。
  • pendulum_pid.zip_MATLAB_PID_SIMULINK_系统__PID_
    优质
    本资源包包含MATLAB与Simulink环境下设计和仿真的PID控制器代码,用于实现对倒立摆系统的稳定控制。通过调整PID参数,可以有效提升系统性能和稳定性。适用于学习和研究控制系统理论。 本段落探讨了一级倒立摆的PID控制方法,并使用Simulink进行实现。
  • 基于T-S模型和LMI模糊(MATLAB)
    优质
    本研究提出了一种基于T-S模型与线性矩阵不等式(LMI)的单级倒立摆模糊控制策略,并通过MATLAB进行了仿真验证。 【达摩老生出品,必属精品】资源名:单级倒立摆的_T-S 模型_ LMI_模糊控制器_matlab 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的。如果您下载后遇到不能运行的问题,可以联系作者进行指导或者更换。 适合人群:新手及有一定经验的开发人员
  • 模、及LQU仿真
    优质
    本研究探讨了二级倒立摆系统的数学模型建立与控制策略设计,并通过仿真验证了基于LQR(线性二次型调节器)理论的最优控制器在稳定系统中的有效性。 在IT领域内,倒立摆是一种常用于研究动态稳定性和控制理论的复杂系统,在机器人学中有广泛应用。本项目主要关注二级倒立摆的建模与仿真,并采用LQU(线性二次优)控制器来实现这一目标。 **1. 倒立摆** 倒立摆是一个物理系统,它由一个或多个可以绕垂直轴旋转的连杆组成,其中最顶端的连杆保持直立状态。二级倒立摆包括两个连续的移动环节,比单级倒立摆更具挑战性,因为它的动态行为更加复杂。 **2. 线性系统** 线性系统理论是控制系统设计的基础,适用于分析和设计像倒立摆这样的动态系统。它假设系统的输入、输出和内部变量之间存在线性关系,并且可以用一组线性微分方程来描述该系统。 **3. LQU控制** LQU(线性二次优)控制是一种优化策略,旨在最小化性能指标如能量消耗或误差平方和。这种方法基于贝尔曼方程与动态规划理论,通过设计控制器使系统的状态向量的二次型性能指标达到最优值。 **4. 建模** 在本项目中,首先需要对二级倒立摆进行数学建模。通常采用拉格朗日力学方法将系统动能和势能转化为一组状态方程。这一步骤非常关键,因为它为后续控制器的设计提供了基础理论依据。 **5. 控制仿真** 控制仿真是通过计算机模拟实际控制过程来评估控制器在各种条件下的性能表现。对于倒立摆而言,这意味着要观察并分析控制器如何应对系统的动态变化以维持稳定状态。 **6. 代码实现** 项目中可能使用MATLAB或者其他编程语言编写LQU控制器的代码(例如文件名daolibai.m)。MATLAB是工程计算和控制系统设计常用的工具之一,其Simulink模块可以方便地进行系统仿真分析。 **7. 论文与说明文档** 二阶倒立摆仿真.docx可能包含了项目的详细研究报告,包括建模方法、控制策略的设计以及仿真实验的结果分析等内容。此外还会有相应的说明文档来解释代码的使用方式和结果解读的方法。 这个项目涵盖了从理论到实践的所有环节,即系统建模、控制器设计及仿真验证等过程,是理解和掌握线性控制系统与复杂动态系统的优秀案例之一。通过深入研究这些材料,不仅可以学习倒立摆控制技术的应用方法,还能提高对LQU控制理论的理解和应用能力。
  • PID
    优质
    本项目研究了一级倒立摆系统的PID控制策略,通过调整PID参数实现对倒立摆姿态的有效稳定与调节。 在Simulink环境中建立了一级倒立摆的PID控制系统模型。该系统利用了PID控制算法来稳定一级倒立摆的状态,通过调整PID参数实现了对系统的有效控制。此建模过程充分展示了Simulink工具箱在复杂动态系统仿真与设计中的强大功能和灵活性。