Advertisement

数学建模利用贪心算法(也称贪婪算法)解决旅行商问题(提供C语言程序源码,已亲测可行)。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供了一个采用C语言开发的、用于解决旅行商问题的贪心算法程序。该程序的逻辑设计深受战德臣老师的启发。在实际运行过程中,用户只需简单地调整所包含城市的数量,以及城市之间的距离参数,便可轻松地启动程序并获得结果。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《旅行商问题的贪婪求解算法》一文探讨了利用贪心策略解决TSP的经典方法,分析了几种常见贪婪算法的有效性与局限性。 旅行商问题的贪心求解算法由吴飞跃和姚香娟提出。作为组合数学中的一个经典难题,该问题至今尚未得到彻底解决。因此,研究者们转向开发近似算法或启发式算法来应对这一挑战,其中较为有效的策略之一便是采用贪心算法。
  • MATLAB-GRASP-for-Traveling-Salesman: 随机自适应搜索(...)
    优质
    本仓库包含使用MATLAB编写的解决旅行商问题(TSP)的GRASP(Greedy Randomized Adaptive Search Procedures,贪婪随机自适应搜索程序)代码。 MATLAB贪婪算法代码GRASP-for-Traveling-Salesman用于解决旅行商问题的贪婪随机自适应搜索程序(GRASP)。 该代码由William Arloff编写,以下是针对旅行商问题的GRASP算法的具体实现: 1. 通过调用贪婪随机初始化函数来获得城市的初始排列。 2. 然后执行局部搜索功能,在初始城市的基础上寻找更优解。 3. 最终输出最佳发现的城市集合、城市的贪婪初始化情况以及与之相关的距离信息(包括贪婪初始化的最佳距离和本地搜索后的最优距离)。 主要的功能模块如下: --------------------- 贪婪随机初始化 -------------------- [已使用,总计]=GreedyRandomInit(城市, 随机数) - Cities:输入的城市矩阵 - randsize:用于生成随机城市的数量
  • C实现的TSP,代验证有效)
    优质
    本项目采用C语言编程,通过贪心算法求解旅行商问题(TSP),并应用于数学建模中。经过多组数据测试,证明该算法的有效性和实用性。 本资源提供了一个用C语言编写的求解TSP问题的贪心算法程序,程序逻辑参考了战德臣老师的思路。使用时只需调整城市的数量以及城市间的距离即可运行。
  • C背包
    优质
    简介:本文探讨了使用C语言实现求解背包问题的贪心算法。通过优先选择单位重量价值最高的物品,实现了资源的有效利用和优化配置。 问题描述: 有一个容量为150的背包以及7个可以分割成任意大小的物品。目标是尽可能让装入背包中的物品总价值最大,但不能超过总容量。 给定的数据如下: - 物品:A B C D E F G - 重量:35 30 60 50 40 10 25 - 价值:10 40 30 50 35 40 30 算法描述: 贪心算法是指,在解决问题时,总是选择当前看来最优的选项。也就是说,不考虑整体的最佳解决方案,而是做出局部最佳的选择。 问题分析: 目标是找到一个策略使得装入背包中的物品总价值最大,并且这些物品的重量之和不超过150。 具体来说, - 目标函数:求∑pi的最大值(其中pi表示每个被选中物品的价值); - 约束条件:∑wi<=M,即所有选择的物品的总重量不能超过背包容量150; - 贪心策略:优先选取单位重量价值最大的物品。
  • C中的装箱
    优质
    本篇文章探讨了如何在C语言编程环境中运用贪心算法来高效地解决经典的装箱问题。通过具体实例分析,文章详细阐述了该策略的设计思路及其应用步骤,为读者提供了理论与实践相结合的学习指南。 本段落介绍了使用C语言基于贪心算法解决装箱问题的方法。装箱问题是经典的组合优化问题之一,目标是将物品分配到箱子中以使使用的箱子数量最少。通过在每一步选择当前最优解来实现全局最优解的贪心算法被广泛应用于此类问题。 首先,在文中我们定义了一些数据结构用于存储有关箱子和货物的信息: ```c typedef struct{ int gno; int gv; }Goods; typedef struct node{ int gno; struct node *link; }GNode; typedef struct node1{ int remainder; GNode * head; struct node1 * next; }GBox; ``` 接着,为了在装箱时按照体积从大到小的顺序排列物品,我们使用冒泡排序算法对货物进行排序: ```c void GoodsSort(Goods goods[], int n){ int i, j; Goods t; for (i = 0; igno = goods[i].gno; pg->link = NULL; if (!hbox){ hbox = (GBox *)malloc(sizeof(GBox)); hbox->remainder = 10; hbox->head = NULL; hbox->next = NULL; } qb=pb=hbox; while (pb){ if (pb->remainder >= goods[i].gv) break; else { qb = pb; pb = pb->next; } } if (!pb){ pb=(GBox *)malloc(sizeof(GBox)); pb->head=NULL; pb->next=NULL; pb->remainder=10; qb->next=pb; } ... } ``` 通过上述步骤,我们可以利用贪心算法有效地解决装箱问题,并尽量减少使用的箱子数量。
  • TSP
    优质
    本研究探讨了运用贪心算法来求解经典的旅行商问题(TSP),旨在通过简便策略寻找近似最优解,以应对复杂的路线规划挑战。 旅行商问题(TSP)是一个经典的组合优化问题,在数学、计算机科学以及运营研究等领域有着广泛的应用价值。它要求在给定一组城市及其相互间的距离后,找到一条最短路径,该路径需经过每个城市一次并最终回到起点。 贪心算法作为一种解决问题的策略,其核心思想是在每一步选择当前最优解,并期望这些局部优化能累积为全局最优解。然而,在TSP问题中应用贪心算法时,它可能仅通过连接最近未访问的城市来构建解决方案,但这种方法并不能保证找到最短路径,因为它忽略了整体路径规划。 在VC++环境下实现TSP的贪心算法通常包括以下步骤: 1. **数据结构**:创建一个二维数组或邻接矩阵存储城市间的距离信息。 2. **初始化**:设定起点,并标记所有其他城市为未访问状态。 3. **贪心策略**:每次选择与当前路径中最近且尚未访问的城市,加入到路径中去。 4. **更新状态**:将已添加至路径中的城市标记为已访问过。 5. **结束条件**:当所有城市都被纳入路径后,返回起点形成闭合环路。 6. **计算总距离**:求解整个循环路线的累计长度。 7. **优化策略**:尽管贪心算法无法确保找到全局最优解,但可以通过引入回溯法或迭代改进等机制来提升性能表现。 在实际编码过程中可以利用C++标准库中的``和``等功能模块辅助实现上述步骤。例如,使用优先队列(如 `std::priority_queue`)根据距离对未访问城市进行排序处理。 测试与调试是确保算法有效性的关键环节之一,需要通过编写各种类型的测试用例来验证其在不同输入情况下的表现能力。 尽管贪心算法可能无法找到TSP问题的全局最优解,特别是在面对大规模的城市集合时更显不足。但对于理解问题本质和快速生成初步解决方案而言,它仍具有一定的实用价值,在资源有限或对时间效率有较高要求的情况下尤为适用。
  • 加油
    优质
    本研究探讨了如何运用贪心算法有效解决车辆在特定路线上的加油优化问题,旨在减少燃油成本和提高效率。通过分析不同情况下的最优策略,提出了一种高效的解决方案。 一个旅行家计划驾驶汽车从城市A前往城市B(出发时油箱是空的)。已知两座城市之间的距离为dis、汽车油箱容量为c、每升汽油可以行驶的距离为d,沿途共有n个加油站,并且第i个加油站离起点的距离记作d[i],该站每升汽油的价格为p[i], i=1,2,…,n。其中假设d[1]=0
  • A*
    优质
    本文探讨了如何应用A*搜索算法优化解决方案,以高效地解答经典的旅行商问题,寻求最短可能路线。 用A*算法求解旅行商问题的C语言实现方法。
  • C++中的背包
    优质
    本文探讨了如何运用贪心算法高效地解决C++编程语言中经典的背包问题,通过选取最有价值的物品组合来最大化总收益。 使用C++应用贪心算法求解背包问题可以作为算法课程设计答辩的内容。
  • C实现的背包
    优质
    本项目采用C语言编写,通过贪心算法高效地解决经典背包问题。程序设计简洁而巧妙,展示了贪婪策略在资源优化配置中的应用价值。 课程的随堂作业是用C语言写的,在Dev环境下可以运行。这是给编程新手准备的代码示例,希望不想动手写作业的朋友能方便一些。毕竟老师也不会仔细检查的。