Advertisement

Python中实现的机器学习算法-线性回归、逻辑回归及BP神经网络

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本教程深入讲解了在Python环境下实现的经典机器学习算法,包括线性回归、逻辑回归以及前馈型BP神经网络模型。 机器学习算法Python实现——线性回归,逻辑回归,BP神经网络 一、线性回归 1. 代价函数 2. 梯度下降算法 3. 均值归一化 4. 最终运行结果 5. 使用scikit-learn库中的线性模型实现 二、逻辑回归 1. 代价函数 2. 梯度 3. 正则化 4. S型函数(即) 5. 映射为多项式 6. 使用的优化方法 7. 运行结果 8. 使用scikit-learn库中的逻辑回归模型实现逻辑回归_手写数字识别_OneVsAll 1. 随机显示100个数字 2. OneVsAll 3. 手写数字识别 4. 预测 5. 运行结果 三、BP神经网络 1. 神经网络model 2. 代价函数 3. 正则化 4. 反向传播BP 5. BP可以求梯度的原因 6. 梯度检查 7. 权重的随机初始化 8. 预测 9. 输出结果 四、SVM支持向量机 1. 代价函数 2. Large Margin 3. SVM Kernel(核函数) 4. 使用中的模型代码 5. 运行结果 五、K-Means聚类算法 1. 聚类过程 2. 目标函数 3. 聚类中心的选择 4. 聚类个数K的选择

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Python-线BP
    优质
    本教程深入讲解了在Python环境下实现的经典机器学习算法,包括线性回归、逻辑回归以及前馈型BP神经网络模型。 机器学习算法Python实现——线性回归,逻辑回归,BP神经网络 一、线性回归 1. 代价函数 2. 梯度下降算法 3. 均值归一化 4. 最终运行结果 5. 使用scikit-learn库中的线性模型实现 二、逻辑回归 1. 代价函数 2. 梯度 3. 正则化 4. S型函数(即) 5. 映射为多项式 6. 使用的优化方法 7. 运行结果 8. 使用scikit-learn库中的逻辑回归模型实现逻辑回归_手写数字识别_OneVsAll 1. 随机显示100个数字 2. OneVsAll 3. 手写数字识别 4. 预测 5. 运行结果 三、BP神经网络 1. 神经网络model 2. 代价函数 3. 正则化 4. 反向传播BP 5. BP可以求梯度的原因 6. 梯度检查 7. 权重的随机初始化 8. 预测 9. 输出结果 四、SVM支持向量机 1. 代价函数 2. Large Margin 3. SVM Kernel(核函数) 4. 使用中的模型代码 5. 运行结果 五、K-Means聚类算法 1. 聚类过程 2. 目标函数 3. 聚类中心的选择 4. 聚类个数K的选择
  • 线原理推导
    优质
    本课程深入浅出地讲解了线性回归、逻辑回归和神经网络的基本概念与数学原理,通过详细的公式推导帮助学习者理解这些机器学习核心算法的工作机制。 线性回归、逻辑回归与神经网络的原理推导包括以下内容: 1. 线性回归定义及求解方法的推导:详细介绍线性回归的基本概念,并深入探讨其求解过程,同时阐述最小二乘法在线性回归中的应用及其显著性的判断方式。 2. 逻辑回归定义和递推公式推导:解释逻辑回归的概念、原理以及如何通过数学手段进行递归计算。此外,还会讨论逻辑回归与神经网络之间的联系,并引入softmax回归作为分类问题的解决方案之一。 3. 多元线性回归分析概述:对多元线性模型的基本理论框架进行简要介绍,包括其假设条件和应用范围等关键点。 4. 神经网络反向传播关系推导及实例说明:详细讲解神经网络中常用的优化算法——反向传播的原理,并通过具体案例演示整个过程。
  • Python线、Lasso和 Ridge
    优质
    本教程详解在Python环境下实现三种经典机器学习算法——线性回归、Lasso回归及Ridge回归的方法与实践,适合初学者入门。 本段落介绍了使用Python实现的机器学习算法,包括线性回归、Lasso回归、Ridge回归、决策树回归以及随机森林回归算法,并应用了UCI混凝土抗压强度数据集进行实践。代码涵盖了输入特征的相关性可视化处理、数据预处理步骤、预测效果计算及结果可视化分析,同时还包括对决策树和随机森林模型的决策重要性的可视化展示。
  • C++(包括线
    优质
    本文探讨了在C++编程语言中实现两种经典的机器学习回归算法——逻辑回归与线性回归的方法和技术。 用C++实现回归算法,包括线性回归和逻辑回归,代码简洁、整洁并带有详细注释,具有良好的封装性,可以直接迁移使用。
  • 线应用
    优质
    本课程介绍线性回归与逻辑回归的基本原理及其在机器学习领域的实际应用,涵盖模型构建、参数估计及预测分析等内容。 机器学习中的线性回归与逻辑回归是基础知识,有助于学习。
  • 天气预测-线
    优质
    本文探讨了在天气预测中应用逻辑回归和线性回归两种机器学习方法的有效性和实用性,为气象研究提供新的视角和技术支持。 机器学习预测天气可以使用逻辑回归或线性回归方法。这两种模型都是常用的统计学工具,在处理分类问题(如逻辑回归)和连续值预测(如线性回归)方面表现出色,适用于气象数据分析与预报任务中。
  • ——
    优质
    逻辑回归是统计学和机器学习中用于分类任务的一种方法,尤其适用于预测二分类结果。通过模型拟合,它能估算事件发生的概率,并基于此做出决策判断。 完成一个逻辑回归算法。首先读取数据的方法为:`data = np.load(data.npz)`,然后将数据解包为训练集特征 `x_train`、对应的训练集标签 `y_train`、测试集特征 `x_test` 和对应的测试集标签 `y_test`。使用训练集来训练一个逻辑回归模型,并要求该模型在测试集上的准确率达到90%以上。
  • 线(最小二乘/梯度下降)、多项式、Softmax.zip
    优质
    本资料深入讲解了机器学习中的基本回归模型,包括利用最小二乘法和梯度下降法实现的线性回归、扩展至非线性的多项式回归以及分类问题常用的逻辑回归与Softmax回归。适合初学者掌握核心算法原理及其应用实践。 博客配套代码和数据集文件已提供。
  • Python可变BP模型
    优质
    本项目介绍如何使用Python语言构建和训练一个基于可变_BP_算法优化的回归神经网络模型,应用于预测分析领域。 建立一个网络结构可变的BP神经网络通用代码,在训练过程中各个参数的意义如下: - `hidden_floors_num`:隐藏层的数量。 - `every_hidden_floor_num`:每层隐藏层中的神经元数量。 - `learning_rate`:学习速率,用于调整权重更新的速度。 - `activation`:激活函数的选择,影响网络的学习能力和泛化性能。 - `regularization`:正则化方式,防止过拟合的方法。 - `regularization_rate`:正则化的比率或强度参数。 - `total_step`:总的训练次数,即迭代的轮数。 - `train_data_path`:用于存储和读取训练数据文件的路径。 - `model_save_path`:模型保存的位置。 在利用训练好的BP神经网络对验证集进行验证时各个参数的意义如下: - `model_save_path`:已经训练完成并需要使用的模型位置。 - `validate_data_path`:存放待验证的数据集合路径。 - `precision`:精度,即预测结果的准确率指标。 当使用训练好的模型来进行数据预测时,相应的参数意义为: - `model_save_path`:存储已训练好模型的位置。 - `predict_data_path`:包含需要进行预测的新输入数据文件位置。 - `predict_result_save_path`:用于保存预测输出的结果路径。